Abstract
Automatic co-text free name matching has a variety of important real-world applications, ranging from fiscal compliance to border control. Name matching systems use a variety of engines to compare two names for similarity, with one of the most critical being phonetic name similarity. In this work, we re-frame existing work on neural sequence-to-sequence transliteration such that it can be applied to name matching. Subsequently, for performance reasons, we then build upon this work to utilize an alternative, non-recurrent neural encoder module. This ultimately yields a model which is 63% faster while still maintaining a 16% improvement in averaged precision over our baseline model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-Hagree, S., Al-Sanabani, M., Alalayah, K.M., Hadwan, M.: Designing an accurate and efficient algorithm for matching Arabic names. In: 2019 First International Conference of Intelligent Computing and Engineering (ICOICE), pp. 1–12 (2019).https://doi.org/10.1109/ICOICE48418.2019.9035184
Al-Hagree, S., Al-Sanabani, M., Hadwan, M., Al-Hagery, M.A.: An improved n-gram distance for names matching. In: 2019 First International Conference of Intelligent Computing and Engineering (ICOICE), pp. 1–7 (2019). https://doi.org/10.1109/ICOICE48418.2019.9035154
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May, 2015, Conference Track Proceedings (2015), http://arxiv.org/abs/1409.0473
Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Statist. 37(6), 1554–1563 (1966). https://doi.org/10.1214/aoms/1177699147
Belinkov, Y., Durrani, N., Dalvi, F., Sajjad, H., Glass, J.: What do neural machine translation models learn about morphology? In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 861–872. Association for Computational Linguistics, Vancouver, Canada, July 2017. https://doi.org/10.18653/v1/P17-1080. https://www.aclweb.org/anthology/P17-1080
Chen, Y., Skiena, S.: False-friend detection and entity matching via unsupervised transliteration. CoRR abs/1611.06722 (2016). http://arxiv.org/abs/1611.06722
Cun, Y.L., et al.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems 2, pp. 396–404. Morgan Kaufmann Publishers Inc., San Francisco (1990)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Series B (Methodological) 39(1), 1–38 (1977), http://www.jstor.org/stable/2984875
Dhore, M., Shantanu, K., Sonwalkar, T.: Hindi to English machine transliteration of named entities using conditional random fields. Int. J. Comput. Appl. 48, July 2012. https://doi.org/10.5120/7522-0624
Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.J.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)
Ebraheem, M., Thirumuruganathan, S., Joty, S., Ouzzani, M., Tang, N.: Distributed representations of tuples for entity resolution. Proc. VLDB Endow. 11(11), 1454–1467 (2018). https://doi.org/10.14778/3236187.3236198
Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4), 193–202 (1980).https://doi.org/10.1007/bf00344251, https://doi.org/10.14778/3236187.3236198
Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML 2017, pp. 1243–1252. JMLR.org (2017)
Gong, J., Newman, B.: English-Chinese name machine transliteration using search and neural network models (2018)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
ISO: ISO Standard 646, 7-Bit Coded Character Set for Information Processing Interchange. International Organization for Standardization, second edn. (1983). http://www.iso.ch/cate/d4777.html, also available as ECMA-6
Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language models. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI 2016, pp. 2741–2749. AAAI Press (2016)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May, 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6980
Kolitsas, N., Ganea, O.E., Hofmann, T.: End-to-end neural entity linking. In: Proceedings of the 22nd Conference on Computational Natural Language Learning. pp. 519–529. Association for Computational Linguistics, Brussels, Belgium, October 2018. https://doi.org/10.18653/v1/K18-1050, https://www.aclweb.org/anthology/K18-1050
Lee, C., Cheon, J., Kim, J., Kim, T., Kang, I.: Verification of transliteration pairs using distance LSTM-CNN with layer normalization. In: Annual Conference on Human and Language Technology, pp. 76–81. Human and Language Technology (2017)
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady 10, 707 (1966)
Li, T., Zhao, T., Finch, A., Zhang, C.: A tightly-coupled unsupervised clustering and bilingual alignment model for transliteration. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 393–398. Association for Computational Linguistics, Sofia, Bulgaria, August 2013. https://www.aclweb.org/anthology/P13-2070
Li, Y., Li, J., Suhara, Y., Doan, A., Tan, W.C.: Deep entity matching with pre-trained language models. Proc. VLDB Endow. 14(1), 50–60 (2020). https://doi.org/10.14778/3421424.3421431. https://doi.org/10.14778/3421424.3421431
Martins, P.H., Marinho, Z., Martins, A.F.T.: Joint learning of named entity recognition and entity linking. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pp. 190–196. Association for Computational Linguistics, Florence, Italy, July 2019. https://doi.org/10.18653/v1/P19-2026, https://www.aclweb.org/anthology/P19-2026
Medhat, D., Hassan, A., Salama, C.: A hybrid cross-language name matching technique using novel modified Levenshtein distance. In: 2015 Tenth International Conference on Computer Engineering Systems (ICCES), pp. 204–209 (2015). https://doi.org/10.1109/ICCES.2015.7393046
Merhav, Y., Ash, S.: Design challenges in named entity transliteration. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 630–640 (2018)
Nabende, P., Tiedemann, J., Nerbonne, J.: Pair hidden Markov model for named entity matching. In: Sobh, T. (ed.) Innovations and Advances in Computer Sciences and Engineering, pp. 497–502. Springer, Netherlands (2010)
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)
Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, NIPS 2001, pp. 841–848. MIT Press, Cambridge (2001)
Nie, H., et al.: Deep sequence-to-sequence entity matching for heterogeneous entity resolution. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM 2019, pp. 629–638. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3357384.3358018
Peled, O., Fire, M., Rokach, L., Elovici, Y.: Matching entities across online social networks. Neurocomputing 210, 91–106 (2016)
Priyadarshani, H., Rajapaksha, M., Ranasinghe, M., Sarveswaran, K., Dias, G.: Statistical machine learning for transliteration: Transliterating names between Sinhala, Tamil and English. In: 2019 International Conference on Asian Language Processing (IALP), pp. 244–249 (2019). https://doi.org/10.1109/IALP48816.2019.9037651
Qu, W.: English-Chinese name transliteration by latent analogy. In: Proceedings of the 2013 International Conference on Computational and Information Sciences, ICCIS 2013, pp. 575–578. IEEE Computer Society, USA (2013). https://doi.org/10.1109/ICCIS.2013.159
Rosca, M., Breuel, T.: Sequence-to-sequence neural network models for transliteration. arXiv preprint arXiv:1610.09565 (2016)
Russell, R.C.: Index (April 1918), US Patent 1,261,167
Sarkar, K., Chatterjee, S.: Bengali-to-english forward and backward machine transliteration using support vector machines. In: Mandal, J.K., Dutta, P., Mukhopadhyay, S. (eds.) CICBA 2017. CCIS, vol. 776, pp. 552–566. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6430-2_43
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, NIPS 2014, pp. 3104–3112. MIT Press, Cambridge (2014)
Upadhyay, S., Kodner, J., Roth, D.: Bootstrapping transliteration with constrained discovery for low-resource languages. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 501–511. Association for Computational Linguistics, Brussels, Belgium, October–November 2018. https://doi.org/10.18653/v1/D18-1046, https://www.aclweb.org/anthology/D18-1046
Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 6000–6010. Curran Associates Inc., Red Hook (2017)
Wang, D., Xu, J., Chen, Y., Zhang, Y.: Monolingual corpora based Japanese-Chinese translation extraction for kana names. J. Chinese Inf. Process. 29(5), 11 (2015)
Wu, L., Petroni, F., Josifoski, M., Riedel, S., Zettlemoyer, L.: Scalable zero-shot entity linking with dense entity retrieval. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6397–6407. Association for Computational Linguistics, Online, November 2020. https://doi.org/10.18653/v1/2020.emnlp-main.519
Wu, Y., et al.: Google’s neural machine translation system: Bridging the gap between human and machine translation. CoRR abs/1609.08144 (2016). http://arxiv.org/abs/1609.08144
Yamani, Z., Nurmaini, S., Firdaus, R, M.N., Sari, W.K.: Author matching using string similarities and deep neural networks. In: Proceedings of the Sriwijaya International Conference on Information Technology and Its Applications (SICONIAN 2019), pp. 474–479. Atlantis Press (2020). https://doi.org/10.2991/aisr.k.200424.073
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Blair, P., Eliav, C., Hasanaj, F., Bar, K. (2021). Balancing Speed and Accuracy in Neural-Enhanced Phonetic Name Matching. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12979. Springer, Cham. https://doi.org/10.1007/978-3-030-86517-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-86517-7_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86516-0
Online ISBN: 978-3-030-86517-7
eBook Packages: Computer ScienceComputer Science (R0)