Skip to main content

Methods for Automatic Machine-Learning Workflow Analysis

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track (ECML PKDD 2021)

Abstract

Developing real-world Machine Learning-based Systems goes beyond algorithm development. ML algorithms are usually embedded in complex pre-processing steps and consider different stages like development, testing or deployment. Managing workflows poses several challenges, such as workflow versioning, sharing pipeline elements or optimizing individual workflow elements - tasks which are usually conducted manually by data scientists. A dataset containing 16 035 real-world Machine Learning and Data Science Workflows extracted from the ONE DATA platform (https://onelogic.de/en/one-data/) is explored and made available. Based on our analysis, we develop a representation learning algorithm using a graph-level Graph Convolutional Network with explicit residuals which exploits workflow versioning history. Moreover, this method can easily be adapted to supervised tasks and outperforms state-of-the-art approaches in NAS-bench-101 performance prediction. Another interesting application is the suggestion of component types, for which a classification baseline is presented. A slightly adapted GCN using both graph- and node-level information further improves upon this baseline. The used codebase as well as all experimental setups with results are available at https://github.com/wendli01/workflow_analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at https://zenodo.org/record/4633704.

References

  1. Amershi, S., et al.: Software engineering for machine learning: a case study. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 291–300. IEEE (2019)

    Google Scholar 

  2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  3. Basu, A., Blanning, R.W.: A formal approach to workflow analysis. Inf. Syst. Res. 11(1), 17–36 (2000)

    Article  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  5. Bresson, X., Laurent, T.: Residual gated graph convNets. arXiv preprint arXiv:1711.07553 (2017)

  6. Du, J., Zhang, S., Wu, G., Moura, J.M., Kar, S.: Topology adaptive graph convolutional networks. arXiv preprint arXiv:1710.10370 (2017)

  7. Friesen, N., Rüping, S.: Workflow analysis using graph kernels. In: LWA, pp. 59–66. Citeseer (2010)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

  10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  11. Ward, J.H., Jr.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963). https://doi.org/10.1080/01621459.1963.10500845

    Article  MathSciNet  Google Scholar 

  12. Kaushik, G., Ivkovic, S., Simonovic, J., Tijanic, N., Davis-Dusenbery, B., Deniz, K.: Graph theory approaches for optimizing biomedical data analysis using reproducible workflows. bioRxiv, p. 074708 (2016)

    Google Scholar 

  13. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93 (1938)

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  16. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  17. Li, J., Fan, Y., Zhou, M.: Timing constraint workflow nets for workflow analysis. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 33(2), 179–193 (2003)

    Article  Google Scholar 

  18. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  19. Lukasik, J., Friede, D., Zela, A., Stuckenschmidt, H., Hutter, F., Keuper, M.: Smooth variational graph embeddings for efficient neural architecture search. arXiv preprint arXiv:2010.04683 (2020)

  20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Adv. Neural. Inf. Process. Syst. 26, 3111–3119 (2013)

    Google Scholar 

  21. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec: learning distributed representations of graphs. arXiv preprint arXiv:1707.05005 (2017)

  22. Ning, X., Zheng, Y., Zhao, T., Wang, Y., Yang, H.: A generic graph-based neural architecture encoding scheme for predictor-based NAS (2020)

    Google Scholar 

  23. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  24. Rosenberg, A., Hirschberg, J.: V-measure: a conditional entropy-based external cluster evaluation measure. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp. 410–420 (2007)

    Google Scholar 

  25. Rozemberczki, B., Sarkar, R.: Characteristic functions on graphs: birds of a feather, from statistical descriptors to parametric models (2020)

    Google Scholar 

  26. Shi, H., Pi, R., Xu, H., Li, Z., Kwok, J.T., Zhang, T.: Multi-objective neural architecture search via predictive network performance optimization (2019)

    Google Scholar 

  27. Stier, J., Granitzer, M.: Structural analysis of sparse neural networks. Procedia Comput. Sci. 159, 107–116 (2019)

    Article  Google Scholar 

  28. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to designing convolutional neural network architectures. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 497–504 (2017)

    Google Scholar 

  29. Tang, Y., et al.: A semi-supervised assessor of neural architectures. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1810–1819 (2020)

    Google Scholar 

  30. Balntas, V., Riba, E., Ponsa, D., Mikolajczyk, K.: Learning local feature descriptors with triplets and shallow convolutional neural networks. In: Wilson, R.C., Hancock, E.R., Smith, W.A.P. (eds.) Proceedings of the British Machine Vision Conference (BMVC), pp. 119.1–119.11. BMVA Press (September 2016). https://doi.org/10.5244/C.30.119

  31. Weißgerber, T., Granitzer, M.: Mapping platforms into a new open science model for machine learning. Inf. Technol. 61(4), 197–208 (2019)

    Google Scholar 

  32. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  33. Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: NAS-Bench-101: towards reproducible neural architecture search. In: International Conference on Machine Learning, pp. 7105–7114. PMLR (2019)

    Google Scholar 

  34. Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B 71(4), 623–630 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the Bavarian Ministry of Economic Affairs, Regional Develoment and Energy under the grant ‘CrossAI’ (IUK593/002) as well as by BMK, BMDW, and the Province of Upper Austria in the frame of the COMET Programme managed by FFG. It was also supported by the FFG BRIDGE project KnoP-2D (grant no. 871299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Wendlinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wendlinger, L., Berndl, E., Granitzer, M. (2021). Methods for Automatic Machine-Learning Workflow Analysis. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12979. Springer, Cham. https://doi.org/10.1007/978-3-030-86517-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86517-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86516-0

  • Online ISBN: 978-3-030-86517-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics