Skip to main content

Decoupling Sparsity and Smoothness in Dirichlet Belief Networks

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12976))

  • 1862 Accesses

Abstract

The Dirichlet Belief Network (DirBN) has been proposed as a promising deep generative model that uses Dirichlet distributions to form layer-wise connections and thereby construct a multi-stochastic layered deep architecture. However, the DirBN cannot simultaneously achieve both sparsity, whereby the generated latent distributions place weights on a subset of components, and smoothness, which requires that the posterior distribution should not be dominated by the data. To address this limitation we introduce the sparse and smooth Dirichlet Belief Network (ssDirBN) which can achieve both sparsity and smoothness simultaneously, thereby increasing modelling flexibility over the DirBN. This gain is achieved by introducing binary variables to indicate whether each entity’s latent distribution at each layer uses a particular component. As a result, each latent distribution may use only a subset of components in each layer, and smoothness is enforced on this subset. Extra efforts on modifying the models are also made to fix the issues which is caused by introducing these binary variables. Extensive experimental results on real-world data show significant performance improvements of ssDirBN over state-of-the-art models in terms of both enhanced model predictions and reduced model complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic block models. J. Mach. Learn. Res. 9, 1981–2014 (2008)

    MATH  Google Scholar 

  2. Burkhardt, S., Kramer, S.: Decoupling sparsity and smoothness in the Dirichlet variational autoencoder topic model. J. Mach. Learn. Res. 20(131), 1–27 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Dunson, D.B., Herring, A.H.: Bayesian latent variable models for mixed discrete outcomes. Biostatistics 6(1), 11–25 (2005)

    Article  Google Scholar 

  4. Fan, X., Li, B., Li, C., Sisson, S., Chen, L.: Scalable deep generative relational model with high-order node dependence. In: NeurIPS, pp. 12637–12647 (2019)

    Google Scholar 

  5. Fan, X., Li, B., Li, Y., Sisson, S.: Poisson-randomised DirBN: large mutation is needed in dirichlet belief networks. In: ICML (2021)

    Google Scholar 

  6. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML, pp. 1050–1059 (2016)

    Google Scholar 

  7. Guo, D., Chen, B., Lu, R., Zhou, M.: Recurrent hierarchical topic-guided RNN for language generation. In: ICML, pp. 3810–3821 (2020)

    Google Scholar 

  8. Guo, D., Chen, B., Zhang, H., Zhou, M.: Deep Poisson gamma dynamical systems. In: NeurIPS, pp. 8442–8452 (2018)

    Google Scholar 

  9. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS, pp. 1024–1034 (2017)

    Google Scholar 

  10. Hu, C., Rai, P., Carin, L.: Deep generative models for relational data with side information. In: ICML, pp. 1578–1586 (2017)

    Google Scholar 

  11. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  12. Li, Y., Fan, X., Chen, L., Li, B., Yu, Z., Sisson, S.A.: Recurrent Dirichlet belief networks for interpretable dynamic relational data modelling. In: IJCAI, pp. 2470–2476 (2020)

    Google Scholar 

  13. Schein, A., Linderman, S., Zhou, M., Blei, D., Wallach, H.: Poisson-randomized gamma dynamical systems. In: NeurIPS, pp. 782–793 (2019)

    Google Scholar 

  14. Schein, A., Wallach, H., Zhou, M.: Poisson-gamma dynamical systems. In: NIPS, pp. 5005–5013 (2016)

    Google Scholar 

  15. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29, 93 (2008)

    Google Scholar 

  16. Wang, C., Blei, D.: Decoupling sparsity and smoothness in the discrete hierarchical Dirichlet process. In: NIPS, pp. 1982–1989. Curran Associates Inc. (2009)

    Google Scholar 

  17. Yang, S., Koeppl, H.: A Poisson gamma probabilistic model for latent node-group memberships in dynamic networks. In: AAAI (2018)

    Google Scholar 

  18. Zhang, H., Chen, B., Guo, D., Zhou, M.: WHAI: Weibull hybrid autoencoding inference for deep topic modeling. In: International Conference on Learning Representations (2018)

    Google Scholar 

  19. Zhao, H., Du, L., Buntine, W.: Leveraging node attributes for incomplete relational data. In: ICML, pp. 4072–4081 (2017)

    Google Scholar 

  20. Zhao, H., Du, L., Buntine, W., Zhou, M.: Dirichlet belief networks for topic structure learning. In: NeurIPS, pp. 7955–7966 (2018)

    Google Scholar 

  21. Zhou, M.: Infinite edge partition models for overlapping community detection and link prediction. In: AISTATS, pp. 1135–1143 (2015)

    Google Scholar 

  22. Zhou, M., Cong, Y., Chen, B.: Augmentable gamma belief networks. J. Mach. Learn. Res. 17(163), 1–44 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Zitnik, M., Leskove, J.: Predicting multicellular function through multi-layer tissue networks. Bioinformatics 33, i190–i198 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Yaqiong Li is a recipient of UTS Research Excellence Scholarship. Xuhui Fan and Scott A. Sisson are supported by the Australian Research Council (ARC) through the Australian Centre of Excellence in Mathematical and Statistical Frontiers (ACEMS, CE140100049), and Scott A. Sisson through the ARC Future Fellow Scheme (FT170100079). Bin Li is supported in part by STCSM Project (20511100400), Shanghai Municipal Science and Technology Major Projects (2018SHZDZX01, 2021SHZDZX0103), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuhui Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Fan, X., Chen, L., Li, B., Sisson, S.A. (2021). Decoupling Sparsity and Smoothness in Dirichlet Belief Networks. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12976. Springer, Cham. https://doi.org/10.1007/978-3-030-86520-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86520-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86519-1

  • Online ISBN: 978-3-030-86520-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics