Skip to main content

Inductive Link Prediction with Interactive Structure Learning on Attributed Graph

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2021)

Abstract

Link prediction is one of the most important tasks in graph machine learning, which aims at predicting whether two nodes in a network have an edge. Real-world graphs typically contain abundant node and edge attributes, thus how to perform link prediction by simultaneously learning structure and attribute information from both interactions/paths between two associated nodes and local neighborhood among node’s ego subgraph is intractable.

To address this issue, we develop a novel Path-aware Graph Neural Network (PaGNN) method for link prediction, which incorporates interaction and neighborhood information into graph neural networks via broadcasting and aggregating operations. And a cache strategy is developed to accelerate the inference process. Extensive experiments show a superior performance of our proposal over state-of-the-art methods on real-world link prediction tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://snap.stanford.edu/ogb/data/linkproppred.

  2. 2.

    https://snap.stanford.edu/data/egonets-Facebook.html.

  3. 3.

    https://github.com/shenweichen/GraphEmbedding.

References

  1. AbuOda, G., Morales, G.D.F., Aboulnaga, A.: Link prediction via higher-order motif features. In: ECML PKDD, pp. 412–429 (2019)

    Google Scholar 

  2. Brin, S., Page, L.: Reprint of: the anatomy of a large-scale hypertextual web search engine. Comput. Netw. 56(18), 3825–3833 (2012)

    Article  Google Scholar 

  3. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Trans. Knowl. Data Eng. 31(5), 833–852 (2018)

    Article  Google Scholar 

  4. Feng, Y., Hu, B., Lv, F., Liu, Q., Zhang, Z., Ou, W.: ATBRG: adaptive target-behavior relational graph network for effective recommendation (2020)

    Google Scholar 

  5. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: SIGKDD, pp. 855–864 (2016)

    Google Scholar 

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  7. Hu, B., Hu, Z., Zhang, Z., Zhou, J., Shi, C.: KGNN: distributed framework for graph neural knowledge representation. In: ICML Workshop (2020)

    Google Scholar 

  8. Hu, B., Shi, C., Zhao, W.X., Yu, P.S.: Leveraging meta-path based context for top-n recommendation with a neural co-attention model. In: SIGKDD, pp. 1531–1540 (2018)

    Google Scholar 

  9. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  Google Scholar 

  10. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  11. Kovács, I.A., et al.: Network-based prediction of protein interactions. Nat. Commun. 10(1), 1–8 (2019)

    Article  Google Scholar 

  12. Kumar, A., Singh, S.S., Singh, K., Biswas, B.: Link prediction techniques, applications, and performance: A survey. Phys. A 553, 124289 (2020)

    Article  MathSciNet  Google Scholar 

  13. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  14. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: SIGKDD, pp. 701–710 (2014)

    Google Scholar 

  15. Sankar, A., Zhang, X., Chang, K.C.C.: Meta-GNN: metagraph neural network for semi-supervised learning in attributed heterogeneous information networks. In: ASONAM, pp. 137–144 (2019)

    Google Scholar 

  16. Sha, X., Sun, Z., Zhang, J.: Attentive knowledge graph embedding for personalized recommendation. arXiv preprint arXiv:1910.08288 (2019)

  17. Shi, B., Weninger, T.: ProjE: embedding projection for knowledge graph completion. In: AAAI, vol. 31 (2017)

    Google Scholar 

  18. Shi, C., Hu, B., Zhao, W.X., Philip, S.Y.: Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl. Data Eng. 31(2), 357–370 (2018)

    Article  Google Scholar 

  19. Shibata, N., Kajikawa, Y., Sakata, I.: Link prediction in citation networks. J. Am. Soc. Inform. Sci. Technol. 63(1), 78–85 (2012)

    Article  Google Scholar 

  20. Teru, K., Denis, E., Hamilton, W.: Inductive relation prediction by subgraph reasoning. In: ICML, pp. 9448–9457 (2020)

    Google Scholar 

  21. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  22. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: SIGKDD, pp. 1225–1234 (2016)

    Google Scholar 

  23. Wang, H., Lian, D., Zhang, Y., Qin, L., Lin, X.: GOGNN: graph of graphs neural network for predicting structured entity interactions, pp. 1317–1323 (2020)

    Google Scholar 

  24. Wang, Z., Liao, J., Cao, Q., Qi, H., Wang, Z.: FriendBook: a semantic-based friend recommendation system for social networks. IEEE Trans. Mob. Comput. 14(3), 538–551 (2014)

    Article  Google Scholar 

  25. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24 (2020)

    Google Scholar 

  26. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph WaveNet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019)

  27. Xu, C., Cui, Z., Hong, X., Zhang, T., Yang, J., Liu, W.: Graph inference learning for semi-supervised classification. arXiv preprint arXiv:2001.06137 (2020)

  28. Xu, N., Wang, P., Chen, L., Tao, J., Zhao, J.: MR-GNN: multi-resolution and dual graph neural network for predicting structured entity interactions, pp. 3968–3974 (2019)

    Google Scholar 

  29. Yang, S., et al.: Financial risk analysis for SMEs with graph-based supply chain mining. In: IJCAI, pp. 4661–4667 (2020)

    Google Scholar 

  30. Yang, S., Zou, L., Wang, Z., Yan, J., Wen, J.R.: Efficiently answering technical questions–a knowledge graph approach. In: AAAI, vol. 31 (2017)

    Google Scholar 

  31. Yang, Z., Cohen, W., Salakhudinov, R.: Revisiting semi-supervised learning with graph embeddings. In: ICML, pp. 40–48 (2016)

    Google Scholar 

  32. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: SIGKDD, pp. 974–983 (2018)

    Google Scholar 

  33. Zhang, D., et al.: AGL: a scalable system for industrial-purpose graph machine learning. arXiv preprint arXiv:2003.02454 (2020)

  34. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: NeurIPS, pp. 5165–5175 (2018)

    Google Scholar 

  35. Zhang, W., Fang, Y., Liu, Z., Wu, M., Zhang, X.: mg2vec: learning relationship-preserving heterogeneous graph representations via metagraph embedding. IEEE Trans. Knowl. Data Eng. (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, S. et al. (2021). Inductive Link Prediction with Interactive Structure Learning on Attributed Graph. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12976. Springer, Cham. https://doi.org/10.1007/978-3-030-86520-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86520-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86519-1

  • Online ISBN: 978-3-030-86520-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics