Skip to main content

Sparse Information Filter for Fast Gaussian Process Regression

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2021)

Abstract

Gaussian processes (GPs) are an important tool in machine learning and applied mathematics with applications ranging from Bayesian optimization to calibration of computer experiments. They constitute a powerful kernelized non-parametric method with well-calibrated uncertainty estimates, however, off-the-shelf GP inference procedures are limited to datasets with a few thousand data points because of their cubic computational complexity. For this reason, many sparse GPs techniques were developed over the past years. In this paper, we focus on GP regression tasks and propose a new algorithm to train variational sparse GP models. An analytical posterior update expression based on the Information Filter is derived for the variational sparse GP model. We benchmark our method on several real datasets with millions of data points against the state-of-the-art Stochastic Variational GP (SVGP) and sparse orthogonal variational inference for Gaussian Processes (SOLVEGP). Our method achieves comparable performances to SVGP and SOLVEGP while providing considerable speed-ups. Specifically, it is consistently four times faster than SVGP and on average 2.5 times faster than SOLVEGP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code is available at https://github.com/lkania/Sparse-IF-for-Fast-GP.

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org

  2. Benavoli, A., Azzimonti, D., Piga, D.: Skew gaussian processes for classification. In: Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2020. LNCS. Springer, Heidelberg (2020)

    Google Scholar 

  3. Bui, T.D., Yan, J., Turner, R.E.: A unifying framework for sparse Gaussian process approximation using power expectation propagation. J. Mach. Learn. Res. 18, 1–72 (2017)

    Google Scholar 

  4. Csató, L., Opper, M.: Sparse on-line Gaussian processes. Neural Comput. 14(3), 641–668 (2002)

    Article  Google Scholar 

  5. Deisenroth, M.P., Ng, J.W.: Distributed Gaussian processes. In: 32nd International Conference on Machine Learning, ICML 2015.,vol. 37, pp. 1481–1490 (2015)

    Google Scholar 

  6. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  7. Hensman, J., Fusi, N., Lawrence, N.D.: Gaussian processes for big data. In: Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (2013)

    Google Scholar 

  8. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Lawrence, N.: Probabilistic non-linear principal component analysis with Gaussian process latent variable models. J. Mach. Learn. Res. 6, 1783–1816 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Liu, H., Cai, J., Wang, Y., Ong, Y.S.: Generalized robust Bayesian committee machine for large-scale Gaussian process regression. In: 35th International Conference on Machine Learning, Stockholm, Sweden. ICML 2018, vol. 7, pp. 4898–4910 (2018)

    Google Scholar 

  12. Matthews, A.G.D.G., et al.: GPflow: a Gaussian process library using TensorFlow. J. Mach. Learn. Res. 18(40), 1–6 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6, 1939–1959 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press (2006)

    Google Scholar 

  15. Salimbeni, H., Eleftheriadis, S., Hensman, J.: Natural gradients in practice: non-conjugate variational inference in Gaussian process models. In: International Conference on Artificial Intelligence and Statistics, AISTATS, vol. 2018, pp. 689–697 (2018)

    Google Scholar 

  16. Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. SSS, Springer, New York (2018). https://doi.org/10.1007/978-1-4757-3799-8

  17. Särkkä, S., Hartikainen, J.: Infinite-dimensional Kalman filtering approach to spatio-temporal Gaussian process regression. J. Mach. Learn. Res. 22, 993–1001 (2012)

    Google Scholar 

  18. Särkkä, S., Solin, A.: Applied Stochastic Differential Equations. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  19. Schürch, M., Azzimonti, D., Benavoli, A., Zaffalon, M.: Recursive estimation for sparse Gaussian process regression. Automatica 120, 109127 (2020)

    Article  MathSciNet  Google Scholar 

  20. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)

    Article  Google Scholar 

  21. Shi, J., Titsias, M.K., Mnih, A.: Sparse orthogonal variational inference for Gaussian processes. In: Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), Palermo, Italy, vol. 108 (2020)

    Google Scholar 

  22. Snelson, E., Ghahramani, Z.: Sparse Gaussian processes using pseudo-inputs Edward. In: Weiss, Y., Schölkopf, B., Platt, C., J. (eds.) Advances in Neural Information Processing Systems, vol. 18. pp. 1257–1264. MIT Press (2006)

    Google Scholar 

  23. Titsias, M.K.: Variational learning of inducing variables in sparse Gaussian processes. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 5, pp. 567–574 (2009)

    Google Scholar 

  24. Tresp, V.: A Bayesian committee machine. Neural Computation 12, 2719–2741 (2000)

    Article  Google Scholar 

  25. van der Wilk, M., Dutordoir, V., John, S., Artemev, A., Adam, V., Hensman, J.: A framework for interdomain and multioutput Gaussian processes. arXiv:2003.01115 (2020)

  26. Wang, K., Pleiss, G., Gardner, J., Tyree, S., Weinberger, K.Q., Wilson, A.G.: Exact Gaussian processes on a million data points. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

Download references

Acknowledgments

Lucas Kania thankfully acknowledges the support of the Swiss National Science Foundation (grant number 200021_188534). Manuel Schürch and Dario Azzimonti gratefully acknowledge the support of the Swiss National Research Programme 75 “Big Data” (grant number 407540_167199/1). All authors would like to thank the IDSIA Robotics Lab for granting access to their computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Kania .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 646 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kania, L., Schürch, M., Azzimonti, D., Benavoli, A. (2021). Sparse Information Filter for Fast Gaussian Process Regression. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12977. Springer, Cham. https://doi.org/10.1007/978-3-030-86523-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86523-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86522-1

  • Online ISBN: 978-3-030-86523-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics