Skip to main content

SmartPatch: Improving Handwritten Word Imitation with Patch Discriminators

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 (ICDAR 2021)

Abstract

As of recent generative adversarial networks have allowed for big leaps in the realism of generated images in diverse domains, not the least of which being handwritten text generation. The generation of realistic-looking handwritten text is important because it can be used for data augmentation in handwritten text recognition (HTR) systems or human-computer interaction. We propose SmartPatch, a new technique increasing the performance of current state-of-the-art methods by augmenting the training feedback with a tailored solution to mitigate pen-level artifacts. We combine the well-known patch loss with information gathered from the parallel trained handwritten text recognition system and the separate characters of the word. This leads to a more enhanced local discriminator and results in more realistic and higher-quality generated handwritten words.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Code: https://github.com/MattAlexMiracle/SmartPatch

  2. 2.

    https://forms.gle/TNoZvxihJNUJiV1b9

References

  1. Aksan, E., Hilliges, O.: STCN: stochastic temporal convolutional networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=HkzSQhCcK7

  2. Aksan, E., Pece, F., Hilliges, O.: DeepWriting: making digital ink editable via deep generative modeling, pp. 1–14. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3173574.3173779

  3. Bhattacharya, U., Plamondon, R., Dutta Chowdhury, S., Goyal, P., Parui, S.K.: A sigma-lognormal model-based approach to generating large synthetic online handwriting sample databases. Int. J. Doc. Anal. Recogn. (IJDAR) 20(3), 155–171 (2017). https://doi.org/10.1007/s10032-017-0287-5

    Article  Google Scholar 

  4. Cho, K., van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. In: Proceedings of SSST-8, 8th Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar, pp. 103–111. Association for Computational Linguistics (October 2014). https://doi.org/10.3115/v1/W14-4012

  5. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A.C., Bengio, Y.: A recurrent latent variable model for sequential data. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 2980–2988. Curran Associates, Inc. (2015). https://proceedings.neurips.cc/paper/2015/file/b618c3210e934362ac261db280128c22-Paper.pdf

  6. Davis, B., Tensmeyer, C., Price, B., Wigington, C., Morse, B., Jain, R.: Text and style conditioned GAN for generation of offline handwriting lines. In: British Machine Vision Conference (BMVC) (2020). https://www.bmvc2020-conference.com/assets/papers/0815.pdf

  7. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S., Litman, R.: ScrabbleGAN: semi-supervised varying length handwritten text generation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4323–4332 (2020). https://doi.org/10.1109/CVPR42600.2020.00438

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014). https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

  9. Graves, A.: Generating sequences with recurrent neural networks. arXiv:1308.0850 [cs] (June 2014)

  10. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf

  11. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1510–1519 (2017). https://doi.org/10.1109/ICCV.2017.167

  12. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976 (2017). https://doi.org/10.1109/CVPR.2017.632

  13. Kang, L., Riba, P., Wang, Y., Rusiñol, M., Fornés, A., Villegas, M.: GANwriting: content-conditioned generation of styled handwritten word images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 273–289. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_17

    Chapter  Google Scholar 

  14. Kang, L., Toledo, J.I., Riba, P., Villegas, M., Fornés, A., Rusiñol, M.: Convolve, attend and spell: an attention-based sequence-to-sequence model for handwritten word recognition. In: Brox, T., Bruhn, A., Fritz, M. (eds.) GCPR 2018. LNCS, vol. 11269, pp. 459–472. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12939-2_32

    Chapter  Google Scholar 

  15. Marti, U.V., Bunke, H.: The IAN-database: an English sentence database for offline handwriting recognition. Int. J. Doc. Anal. Recogn. 5(1), 39–46 (2002). https://doi.org/10.1007/s100320200071

    Article  MATH  Google Scholar 

  16. Mayr, M., Stumpf, M., Nicolaou, A., Seuret, M., Maier, A., Christlein, V.: Spatio-temporal handwriting imitation. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12539, pp. 528–543. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68238-5_38

    Chapter  Google Scholar 

  17. Michael, J., Labahn, R., Grüning, T., Zöllner, J.: Evaluating sequence-to-sequence models for handwritten text recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1286–1293 (2019). https://doi.org/10.1109/ICDAR.2019.00208

  18. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015). https://arxiv.org/abs/1409.1556

  20. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016). https://doi.org/10.1109/CVPR.2016.308

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Mayr .

Editor information

Editors and Affiliations

Appendices

Appendix

A Further Examples are shown in Fig. 11

Fig. 11.
figure 11

Comparison of randomly chosen outputs. For each row the priming image and the content is the same.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mattick, A., Mayr, M., Seuret, M., Maier, A., Christlein, V. (2021). SmartPatch: Improving Handwritten Word Imitation with Patch Discriminators. In: Lladós, J., Lopresti, D., Uchida, S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science(), vol 12821. Springer, Cham. https://doi.org/10.1007/978-3-030-86549-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86549-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86548-1

  • Online ISBN: 978-3-030-86549-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics