Skip to main content

On the Use of Attention in Deep Learning Based Denoising Method for Ancient Cham Inscription Images

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 (ICDAR 2021)

Abstract

Image denoising is one of the most important steps in the document image analysis pipeline thanks to its good effect into the rest of the workflow. However, the noise in historical documents is totally different from the common noise present in other classical problems of image processing. It is particularly the case of the image of Cham inscriptions obtained by the stamping of ancient stele. In this paper, we leverage the advantage of deep learning to adapt with these noisy conditions. The proposed network follows an encoder-decoder structure by combining convolution/deconvolution operators with symmetrical skip connections and residual blocks for improving reconstructed image. Furthermore, global attention fusion is proposed to learn the relevant regions in the image. Our experiments demonstrate the proposed method can’t only remove unwanted parts in the image, but also enhance the visual quality for the Cham inscriptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mao, X.J., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Proceedings of the 30th International Conference on Neural Information Processing Systems (2016)

    Google Scholar 

  2. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans. Image Process 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  3. Kesiman, M.W.A., et al.: Benchmarking of document image analysis tasks for palm leaf manuscripts from southeast Asia. J. Imaging 4(2), 43 (2018)

    Google Scholar 

  4. Lehtinen, J., et al.: Noise2noise: Learning image restoration without clean data. In: International Conference on Machine Learning (2018)

    Google Scholar 

  5. Krull, A., Buchholz, T.O., Jug, F.: Noise2void-learning denoising from single noisy images. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  6. Pitas, I., Venetsanopoulos, A.N.: Nonlinear Digital Filters: Principles and Applications, vol. 84. Springer, New York (2013) https://doi.org/10.1007/978-1-4757-6017-0

  7. Wiener, N.: Extrapolation, Interpolation, and Smoothing of Stationary time Series: with Engineering Applications. MIT Press, Cambridge (1950)

    Google Scholar 

  8. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846. IEEE (1998)

    Google Scholar 

  9. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 60–65 (2005)

    Google Scholar 

  10. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Google Scholar 

  11. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  12. Dong, W., Shi, G., Li, X.: Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans. Image Process. 22(2), 700–711 (2012)

    Article  MathSciNet  Google Scholar 

  13. Choi, H., Baraniuk, R.: Analysis of wavelet-domain wiener filters. In: Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, pp. 613–616 (1998)

    Google Scholar 

  14. Ram, I., Elad, M., Cohen, I.: Generalized tree-based wavelet transform. IEEE Trans. Signal Process. 59(9), 4199–4209 (2011)

    Article  MathSciNet  Google Scholar 

  15. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  16. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)

    Article  MathSciNet  Google Scholar 

  17. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: Can plain neural networks compete with bm3d? In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2392–2399 (2012)

    Google Scholar 

  18. Dumpala, V., Kurupathi, S.R., Bukhari, S.S., Dengel, A.: Removal of historical document degradations using conditional gans. In: ICPRAM (2019)

    Google Scholar 

  19. Souibgui, M.A., Kessentini, Y.: De-gan: a conditional generative adversarial network for document enhancement. In: IEEE Transactions on PAMI (2020)

    Google Scholar 

  20. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1412–1421. Lisbon, Portugal (September 2015)

    Google Scholar 

  21. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31th International Conference on Neural Information Processing Systems (2017)

    Google Scholar 

  22. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  23. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision, pp. 3–19 (2018)

    Google Scholar 

  24. Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: Bam: bottleneck attention module. In: British Machine Vision Conference (2018)

    Google Scholar 

  25. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363. PMLR (2019)

    Google Scholar 

  26. Schlemper, J., et al.: Attention gated networks: Learning to leverage salient regions in medical images. Med. Image Anal. 53, 197–207 (2019)

    Article  Google Scholar 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  28. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional gans. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  29. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  30. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: European Conference on Computer Vision, pp. 694–711 (2016)

    Google Scholar 

  31. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  32. Nguyen, M.T., Shweyer, A.V., Le, T.L., Tran, T.H., Vu, H.: Preliminary results on ancient cham glyph recognition from cham inscription images. In: 2019 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–6. IEEE (2019)

    Google Scholar 

  33. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  34. Hyvarinen, A., Hoyer, P., Oja, E.: Sparse code shrinkage: Denoising by nonlinear maximum likelihood estimation. Adv. Neural Inf. Process. Syst. 11, 473–479 (1999)

    Google Scholar 

  35. Févotte, C., Idier, J.: Algorithms for nonnegative matrix factorization with the beta-divergence. Neural Comput. 23(9), 2421–2456 (2011)

    Article  MathSciNet  Google Scholar 

  36. Deledalle, C.A., Salmon, J., Dalalyan, A.S., et al.: Image denoising with patch based pca: local versus global. BMVC 81, 425–455 (2011)

    Google Scholar 

  37. Zhang, K., Zuo, W., Zhang, L.: Ffdnet: toward a fast and flexible solution for cnn based image denoising. IEEE Trans. Image Process 27(9), 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  38. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  39. Niblack, W.: An Introduction to Digital Image Processing. Strandberg Publishing Company, Birkeroed (1985)

    Google Scholar 

  40. Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the French National Research Agency (ANR) in the framework of the ChAMDOC Project, n\(^\circ \)ANR-19-CE27-0018-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien-Nam Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, TN., Burie, JC., Le, TL., Schweyer, AV. (2021). On the Use of Attention in Deep Learning Based Denoising Method for Ancient Cham Inscription Images. In: Lladós, J., Lopresti, D., Uchida, S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science(), vol 12821. Springer, Cham. https://doi.org/10.1007/978-3-030-86549-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86549-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86548-1

  • Online ISBN: 978-3-030-86549-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics