Skip to main content

Ensuring Interoperability of Laboratory Tests and Results: A Linguistic Approach for Mapping French Laboratory Terminologies with LOINC

  • Conference paper
  • First Online:
Computer Science Protecting Human Society Against Epidemics (ANTICOVID 2021)

Abstract

With the increasing use of electronic patient records, interoperability of patient-related data is of primary concern and international standards have been developed to assure compatibility between health data management systems. The present study is a first step in this direction for laboratory tests written in french, following the French government’s impetus for providing national health records for patients. To address the linguistic complexities inherent to this task, we adopt a natural language processing (NLP) methodology . Our pilot case study shows that computational linguistic assistance in aligning terminologies makes it 3 times faster for domain experts. The significant difference in performance between the existing state of the art and our tool reflects the impact of addressing the linguistic challenges involved in the mapping process, especially in the multilingual context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amith, M.F., He, Z., Bian, J., Lossio-Ventura, J.A., Tao, C.: Assessing the practice of biomedical ontology evaluation: gaps and opportunities. J. Biomed. Inform. 80, 1–13 (2018). https://doi.org/10.1016/j.jbi.2018.02.010, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882531/

  2. Drenkhahna, C.: The LOINC content model and its limitations of usage in the laboratory domain. In: Digital Personalized Health and Medicine, p. 6 (2020)

    Google Scholar 

  3. Fidahussein, M., Vreeman, D.J.: A corpus-based approach for automated LOINC mapping. J. Am. Med. Inform. Assoc. 21(1), 64–72 (2014). https://doi.org/10.1136/amiajnl-2012-001159, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912728/

  4. Fiebeck, J., et al.: Implementing LOINC - current status and ongoing work at a Medical University, p. 7 (2019)

    Google Scholar 

  5. Gkoutos, G.V., Schofield, P.N., Hoehndorf, R.: The anatomy of phenotype ontologies: principles, properties and applications. Briefi. Bioinform. 19(5), 1008–1021 (2017). https://doi.org/10.1093/bib/bbx035, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169674/

  6. Jung, B.K., et al..: Report on the Project for Establishment of the standardized Korean laboratory terminology database, 2015. J. Korean Med. Sci. 32(4), 695–699 (2017). https://doi.org/10.3346/jkms.2017.32.4.695, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334171/

  7. Kaci, S., Patel, N., Prince, V.: From NL preference expressions to comparative preference statements: a preliminary study in eliciting preferences for customised decision support. In: 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, pp. 591–598. IEEE (2014)

    Google Scholar 

  8. Kim, H., El-Kareh, R., Goel, A., Vineet, F., Chapman, W.W.: An approach to improve LOINC mapping through augmentation of local test names. J. Biomed. Inform. 45(4), 651–657 (2012). https://doi.org/10.1016/j.jbi.2011.12.004, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340474/

  9. Kopanitsa, G.: Application of a regenstrief RELMA vol 6.6 to map Russian laboratory terms to LOINC. Methods Inf. Med. 55(02), 177–181 (2016). https://doi.org/10.3414/ME15-01-0068, http://www.thieme-connect.de/DOI/DOI?10.3414/ME15-01-0068

  10. McDonald, C.J., et al.: LOINC, a universal standard for identifying laboratory observations: a 5-year update. Clin. Chem. 49(4), 624–633 (2003). https://doi.org/10.1373/49.4.624

    Article  Google Scholar 

  11. Poli, R., Healy, M., Kameas, A. (eds.): Theory and Applications of Ontology: Computer Applications. Springer, Netherlands (2010). https://doi.org/10.1007/978-90-481-8847-5, https://www.springer.com/gp/book/9789048188468

  12. Rosenbloom, S.T., Miller, R.A., Johnson, K.B., Elkin, P.L., Brown, S.H.: Interface terminologies: facilitating direct entry of clinical data into electronic health record systems. J. Am. Med. Inform. Assoc. 13(3), 277–288 (2006). https://doi.org/10.1197/jamia.M1957, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1513664/

  13. de Santé, H.A.: Évaluation du débit de filtration glomérulaire et du dosage de la créatininémie dans le diagnostic de la maladie rénale chronique chez l’adulte. Biotribune Mag. 41(1), 6–9 (2011). https://doi.org/10.1007/s11834-011-0067-3, http://link.springer.com/10.1007/s11834-011-0067-3

  14. Uchegbu, C., Jing, X.: The potential adoption benefits and challenges of LOINC codes in a laboratory department: a case study. Health Inf. Sci. Syst. 5(1) (2017). https://doi.org/10.1007/s13755-017-0027-8, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636728/

  15. Wade, G., Rosenbloom, S.T.: Experiences mapping a legacy interface terminology to SNOMED CT. BMC Med. Inf. Decision Making 8(Suppl 1), S3 (2008). https://doi.org/10.1186/1472-6947-8-S1-S3, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582790/

  16. Wang, K.C.: Standard lexicons, coding systems and ontologies for interoperability and semantic computation in imaging. J. Digit. Imag. 31(3), 353–360 (2018). https://doi.org/10.1007/s10278-018-0069-8, http://link.springer.com/10.1007/s10278-018-0069-8

  17. Zunner, C., Bürkle, T., Prokosch, H.U., Ganslandt, T.: Mapping local laboratory interface terms to LOINC at a German university hospital using RELMA V.5: a semi-automated approach. J. Am. Med. Inform. Assoc. 20(2), 293–297 (2013). https://doi.org/10.1136/amiajnl-2012-001063, https://academic.oup.com/jamia/article-lookup/doi/10.1136/amiajnl-2012-001063

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namrata Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patel, N., Abel, Y., Brun, F., Mayoral, G. (2021). Ensuring Interoperability of Laboratory Tests and Results: A Linguistic Approach for Mapping French Laboratory Terminologies with LOINC. In: Byrski, A., Czachórski, T., Gelenbe, E., Grochla, K., Murayama, Y. (eds) Computer Science Protecting Human Society Against Epidemics. ANTICOVID 2021. IFIP Advances in Information and Communication Technology, vol 616. Springer, Cham. https://doi.org/10.1007/978-3-030-86582-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86582-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86581-8

  • Online ISBN: 978-3-030-86582-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics