Skip to main content

Complexity of Word Problems for HNN-Extensions

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12867))

Included in the following conference series:

  • 557 Accesses

Abstract

The computational complexity of the word problem in HNN-extension of groups is studied. HNN-extension is a fundamental construction in combinatorial group theory. It is shown that the word problem for an ascending HNN-extension of a group H is logspace reducible to the so-called compressed word problem for H. The main result of the paper states that the word problem for an HNN-extension of a hyperbolic group H with cyclic associated subgroups can be solved in polynomial time. This result can be easily extended to fundamental groups of graphs of groups with hyperbolic vertex groups and cyclic edge groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The concept of undistorted subgroups is defined for arbitrary finitely generated subgroups but we will need it only for the cyclic case.

References

  1. Artin, E.: Theorie der Zöpfe. Abh. Math. Semin. Univ. Hambg. 4(1), 47–72 (1925)

    Article  Google Scholar 

  2. Avenhaus, J., Madlener, K.: The Nielsen reduction and P-complete problems in free groups. Theoret. Comput. Sci. 32(1–2), 61–76 (1984)

    Article  MathSciNet  Google Scholar 

  3. Bieri, R., Strebel, R.: Almost finitely presented soluble groups. Commentarii Mathematici Helvetici 53, 258–278 (1978)

    Article  MathSciNet  Google Scholar 

  4. Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in Mathematics, vol. 231. Springer, New York (2005). https://doi.org/10.1007/3-540-27596-7

    Book  MATH  Google Scholar 

  5. Boone, W.W.: The word problem. Ann. Math. Second Series 70, 207–265 (1959)

    Article  MathSciNet  Google Scholar 

  6. Britton, J.L.: The word problem. Ann. Math. 77(1), 16–32 (1963)

    Article  MathSciNet  Google Scholar 

  7. Charney, R.: An introduction to right-angled Artin groups. Geom. Dedicata. 125, 141–158 (2007). https://doi.org/10.1007/s10711-007-9148-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Dehn, M.: Über unendliche diskontinuierliche Gruppen. Math. Ann. 71, 116–144 (1911)

    Article  MathSciNet  Google Scholar 

  9. Dehn, M.: Transformation der Kurven auf zweiseitigen Flächen. Math. Ann. 72, 413–421 (1912)

    Article  MathSciNet  Google Scholar 

  10. Diekert, V., Kausch, J.: Logspace computations in graph products. J. Symb. Comput. 75, 94–109 (2016)

    Article  MathSciNet  Google Scholar 

  11. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word Processing in Groups. Jones and Bartlett (1992)

    Google Scholar 

  12. Epstein, D.B.A., Holt, D.F.: The linearity of the conjugacy problem in word-hyperbolic groups. Internat. J. Algebra Comput. 16(2), 287–306 (2006)

    Article  MathSciNet  Google Scholar 

  13. Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory. Mathematical Sciences Research Institute Publications, vol. 8, pp. 75–263. Springer, Heidelberg (1987). https://doi.org/10.1007/978-1-4613-9586-7_3

    Chapter  Google Scholar 

  14. Hagenah, C.: Gleichungen mit regulären Randbedingungen über freien Gruppen. Ph.D. thesis, University of Stuttgart (2000)

    Google Scholar 

  15. Haubold, N., Lohrey, M.: Compressed word problems in HNN-extensions and amalgamated products. Theory Comput. Syst. 49(2), 283–305 (2011). https://doi.org/10.1007/s00224-010-9295-2

    Article  MathSciNet  MATH  Google Scholar 

  16. Holt, D.: Word-hyperbolic groups have real-time word problem. Internat. J. Algebra Comput. 10, 221–228 (2000)

    Article  MathSciNet  Google Scholar 

  17. Holt, D.F., Lohrey, M., Schleimer, S.: Compressed decision problems in hyperbolic groups. In: 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, Berlin, Germany, 13–16 March 2019, LIPIcs, vol. 126, pp. 37:1–37:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). http://www.dagstuhl.de/dagpub/978-3-95977-100-9

  18. Lipton, R.J., Zalcstein, Y.: Word problems solvable in logspace. J. ACM 24(3), 522–526 (1977)

    Article  MathSciNet  Google Scholar 

  19. Lohrey, M.: Decidability and complexity in automatic monoids. Int. J. Found. Comput. Sci. 16(4), 707–722 (2005)

    Article  MathSciNet  Google Scholar 

  20. Lohrey, M.: The Compressed Word Problem for Groups. Springer Briefs in Mathematics, Springer, Heidelberg (2014). https://doi.org/10.1007/978-1-4939-0748-9

    Book  MATH  Google Scholar 

  21. Lohrey, M.: Complexity of word problems for HNN-extensions. CoRR abs/2107.01630 (2021). https://arxiv.org/abs/2107.01630

  22. Magnus, W.: Das Identitätsproblem für Gruppen mit einer definierenden Relation. Math. Ann. 106(1), 295–307 (1932). https://doi.org/10.1007/BF01455888

    Article  MathSciNet  MATH  Google Scholar 

  23. Mattes, C., Weiß, A.: Parallel algorithms for power circuits and the word problem of the Baumslag group. CoRR abs/2102.09921 (2021). https://arxiv.org/abs/2102.09921

  24. Minasyan, A.: On products of quasiconvex subgroups in hyperbolic groups. Int. J. Algebra Comput. 14(2), 173–195 (2004)

    Article  MathSciNet  Google Scholar 

  25. Myasnikov, A., Nikolaev, A.: Verbal subgroups of hyperbolic groups have infinite width. J. Lond. Math. Soc. 90(2), 573–591 (2014)

    Article  MathSciNet  Google Scholar 

  26. Myasnikov, A., Nikolaev, A., Ushakov, A.: Knapsack problems in groups. Math. Comput. 84, 987–1016 (2015)

    Article  MathSciNet  Google Scholar 

  27. Myasnikov, A., Ushakov, A., Won, D.W.: The word problem in the Baumslag group with a non-elementary Dehn function is polynomial time decidable. J. Algebra 345(1), 324–342 (2011)

    Article  MathSciNet  Google Scholar 

  28. Novikov, P.S.: On the algorithmic unsolvability of the word problem in group theory. Am. Math. Soc. Transl. II. Ser. 9, 1–122 (1958)

    Article  Google Scholar 

  29. Rabin, M.O.: Computable algebra, general theory and theory of computable fields. Trans. Am. Math. Soc. 95, 341–360 (1960)

    MathSciNet  MATH  Google Scholar 

  30. Rips, E.: Subgroups of small cancellation groups. Bull. Lond. Math. Soc. 14, 45–47 (1982)

    Article  MathSciNet  Google Scholar 

  31. Simon, H.U.: Word problems for groups and contextfree recognition. In: Proceedings of Fundamentals of Computation Theory, FCT 1979, pp. 417–422. Akademie-Verlag (1979)

    Google Scholar 

  32. Stillwell, J.: Classical Topology and Combinatorial Group Theory, 2nd edn. Springer, Heidelberg (1995). https://doi.org/10.1007/978-1-4612-4372-4

    Book  MATH  Google Scholar 

  33. Waack, S.: The parallel complexity of some constructions in combinatorial group theory. J. Inf. Process. Cybern. EIK 26, 265–281 (1990)

    MathSciNet  MATH  Google Scholar 

  34. Wehrfritz, B.A.F.: On finitely generated soluble linear groups. Math. Z. 170, 155–167 (1980)

    Article  MathSciNet  Google Scholar 

  35. Weiß, A.: On the complexity of conjugacy in amalgamated products and HNN extensions. Ph.D. thesis, University of Stuttgart (2015)

    Google Scholar 

  36. Weiß, A.: A logspace solution to the word and conjugacy problem of generalized Baumslag-Solitar groups. In: Algebra and Computer Science. Contemporary Mathematics, vol. 677. American Mathematical Society (2016)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the DFG project LO748/12-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Lohrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lohrey, M. (2021). Complexity of Word Problems for HNN-Extensions. In: Bampis, E., Pagourtzis, A. (eds) Fundamentals of Computation Theory. FCT 2021. Lecture Notes in Computer Science(), vol 12867. Springer, Cham. https://doi.org/10.1007/978-3-030-86593-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86593-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86592-4

  • Online ISBN: 978-3-030-86593-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics