Skip to main content

Alzheimer's Disease Prediction via the Association of Single Nucleotide Polymorphism with Brain Regions

  • Conference paper
  • First Online:
  • 1546 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12878))

Abstract

Imaging genomics is an effective tool in the detection and causative factor analysis of Alzheimer's disease (AD). Based on single nucleotide polymorphism (SNP) and structural magnetic resonance imaging (MRI) data, we propose a novel AD analysis model using multi-modal data fusion and multi-detection model fusion. Firstly, based on the characteristics of SNP data, we fully extract highly representative features. Secondly, the fused data are used to construct fusion features. Finally, according to the characteristics of the fused data, we design a fused prediction model with multiple machine learning models. The model integrates four machine learning models and feeds them into the final XGBoost model for AD prediction. The experimental results show that the data fusion method and the fusion model of multiple machine learning models proposed in this paper can effectively improve the prediction accuracy. Our model can identify AD patients and detect abnormal brain regions and risk SNPs associated with AD, which can perform the association of risk SNPs with abnormal brain regions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kucmanski, L.S., Zenevicz, L., Geremia, D.S., Madureira, V.S.F., Silva, T.G.d., Souza, S.S.D.: Alzheimer’s desease: challenges faced by family caregivers. J. Revista Brasileira de Geriatria e Gerontologia. 196, 1022–1029 (2016)

    Google Scholar 

  2. Khachaturian, Z.S.: Diagnosis of Alzheimer’s disease. J. Arch. Neurol. 4211, 1097–1105 (1985)

    Article  Google Scholar 

  3. Mucke, L.: Alzheimer's disease. J. Nat. 4617266, 895–897 (2009)

    Google Scholar 

  4. Association, A.S.: 2021 Alzheimer's disease facts and figures. J. Alzheimer's Dementia 173, 327–406 (2021)

    Google Scholar 

  5. Marchitelli, R., et al.: Simultaneous resting-state FDG-PET/fMRI in Alzheimer disease: relationship between glucose metabolism and intrinsic activity. J. Neuroimage. 176, 246–258 (2018)

    Article  Google Scholar 

  6. McEvoy, L.K., et al.: Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. J. Radiol. 2511, 195–205 (2009)

    Article  Google Scholar 

  7. Vemuri, P., Jack, C.R.: Role of structural MRI in Alzheimer’s disease. J. Alzheimer Res. Therapy 24, 1–10 (2010)

    Google Scholar 

  8. Feulner, T., Laws, S., Friedrich, P., Wagenpfeil, S., Wurst, S., Riehle, C., et al.: Examination of the current top candidate genes for AD in a genome-wide association study. J. Mole. Psychiatr. 157, 756–766 (2010)

    Article  Google Scholar 

  9. Hariri, A.R., Drabant, E.M., Weinberger, D.R.: Imaging genetics: perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. J. Biol. Psychiatr. 5910, 888–897 (2006)

    Article  Google Scholar 

  10. Huang, M., Chen, X., Yu, Y., Lai, H., Feng, Q.: Imaging genetics study based on a temporal group sparse regression and additive model for biomarker detection of Alzheimer’s Disease. J. IEEE Trans. Med. Imaging 40, 1461–1473 (2021)

    Google Scholar 

  11. Bi, X.-A., Hu, X., Wu, H., Wang, Y.: Multimodal data analysis of Alzheimer's disease based on clustering evolutionary random forest. J. IEEE Biomed. Health Inform. 2410, 2973–2983 (2020)

    Google Scholar 

  12. Kang, E., Jang, J., Choi, C.H., Kang, S.B., Bang, K.B., Kim, T.O., et al.: Development of a clinical and genetic prediction model for early intestinal resection in patients with Crohn’s disease: results from the IMPACT study. J. J. Clin. Med. 104, 633 (2021)

    Article  Google Scholar 

  13. Gray, K.R., Aljabar, P., Heckemann, R.A., Hammers, A., Rueckert, D., Initiative, A.S.D.N.: Random forest-based similarity measures for multi-modal classification of Alzheimer's disease. J. NeuroImage 65, 167–175 (2013)

    Google Scholar 

  14. Marchetti-Bowick, M., Yin, J., Howrylak, J.A., Xing, E.P.: A time-varying group sparse additive model for genome-wide association studies of dynamic complex traits. J. Bioinform. 3219, 2903–2910 (2016)

    Article  Google Scholar 

  15. Du, L., Liu, K., Zhu, L., Yao, X., Risacher, S.L., Guo, L., et al.: Identifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: a longitudinal study of the ADNI cohort. J. Bioinform. 3514, i474–i483 (2019)

    Article  Google Scholar 

  16. Bi, X.-A., Hu, X., Xie, Y., Wu, H.: A novel CERNNE approach for predicting Parkinson’s Disease-associated genes and brain regions based on multimodal imaging genetics data. J. Med. Image Anal. 67, 101830 (2021)

    Google Scholar 

  17. Huang, Z., Lei, H., Chen, G., Frangi, A.F., Xu, Y., Elazab, A., et al.: Parkinson's disease classification and clinical score regression via united embedding and sparse learning from longitudinal data. J. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  18. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., et al.: PLINK: a tool set for whole-genome association and population-based linkage analyses. J. Am. Hum. Gene. 813, 559–575 (2007)

    Google Scholar 

  19. Marees, A.T., de Kluiver, H., Stringer, S., Vorspan, F., Curis, E., Marie-Claire, C., et al.: A tutorial on conducting genome-wide association studies: quality control and statistical analysis. J. Int. Methods Psychiatr. Res. 272, e1608 (2018)

    Google Scholar 

  20. Kulminski, A.M., Shu, L., Loika, Y., He, L., Nazarian, A., Arbeev, K., et al.: Genetic and regulatory architecture of Alzheimer's disease in the APOE region. J. Alzheimer's Dementia Diag. Assess. Dis. Monit. 121, e12008 (2020)

    Google Scholar 

  21. Zhao, T., Hu, Y., Zang, T., Wang, Y.: Integrate GWAS, eQTL, and mQTL data to identify Alzheimer’s disease-related genes. J. Front, Gene. 10, 1021 (2019)

    Article  Google Scholar 

  22. Killiany, R., Hyman, B., Gomez-Isla, T., Moss, M., Kikinis, R., Jolesz, F., et al.: MRI measures of entorhinal cortex vs hippocampus in preclinical AD. J. Neurol. 588, 1188–1196 (2002)

    Google Scholar 

  23. Echávarri, C., Aalten, P., Uylings, H.B., Jacobs, H., Visser, P.J., Gronenschild, E., et al.: Atrophy in the parahippocampal gyrus as an early biomarker of Alzheimer’s disease. J. Brain Struct. Funct. 215(3–4), 265–271 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiying Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Liu, Y., Wang, T., Lei, B. (2021). Alzheimer's Disease Prediction via the Association of Single Nucleotide Polymorphism with Brain Regions. In: Feng, J., Zhang, J., Liu, M., Fang, Y. (eds) Biometric Recognition. CCBR 2021. Lecture Notes in Computer Science(), vol 12878. Springer, Cham. https://doi.org/10.1007/978-3-030-86608-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86608-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86607-5

  • Online ISBN: 978-3-030-86608-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics