Skip to main content

Iris Normalization Beyond Appr-Circular Parameter Estimation

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12878))

Included in the following conference series:

  • 1436 Accesses

Abstract

The requirement to recognize the iris image of low-quality is rapidly increasing with the practical application of iris recognition, especially the urgent need for high-throughput or applications in covert situations. The appr-circle fitting can not meet the needs due to the high time cost and non-accurate boundary estimation during the normalization process. Furthermore, the appr-circular hypothesis of iris and pupil is not entirely established due to the squint and occlusion in non-cooperative environments. To mitigate this problem, a multi-mask normalization without appr-circular parameter estimation is proposed to make full use of the segmented masks, which provide robust pixel-level iris boundaries. It bridges the segmentation and feature extraction to recognize the low-quality iris, which is thrown directly by the traditional methods. Thus, the complex samples with no appr-circular iris or massive occlusions can be recognized correctly. The extensive experiments are conducted on the representative and challenging databases to verify the generalization and the accuracy of the proposed iris normalization method. Besides, the throughput rate is significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sequeira, A.F., et al.: PROTECT multimodal DB: fusion evaluation on a novel multimodal biometrics dataset envisaging border control. In: Proceedings of International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–5, September 2018

    Google Scholar 

  2. Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1148–1161 (1993)

    Article  Google Scholar 

  3. Wildes, R.P.: Iris recognition: an emerging biometric technology. Proc. IEEE 85(9), 1348–1363 (1997)

    Article  Google Scholar 

  4. BI Test: Casia.v4 Database. http://www.idealtest.org/dbDetailForUser.do?id=4. Accessed Feb 2020

  5. Proenca, H., Filipe, S., Santos, R., Oliveira, J., Alexandre, L.A.: The UBIRIS.v2: a database of visible wavelength iris images captured on the-move and at-a-distance. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1529–1535 (2010)

    Article  Google Scholar 

  6. Vyas, R., Kanumuri, T., Sheoran, G., Dubey, P.: Recent trends of ROI segmentation in iris biometrics: a survey. Int. J. Biom. 11(3), 274 (2019)

    Google Scholar 

  7. Wang, C., Muhammad, J., Wang, Y., et al.: Towards complete and accurate iris segmentation using deep multi-task attention network for non-cooperative iris recognition. IEEE Trans. Inf. Forensics Secur. 15, 2944–2959 (2020)

    Article  Google Scholar 

  8. Hofbauer, H., Jalilian, E., Uhl, A.: Exploiting superior CNN-based iris segmentation for better recognition accuracy. Pattern Recogn. Lett. 120, 17–23 (2019)

    Article  Google Scholar 

  9. Zhao, Z., Kumar, A.: Towards more accurate iris recognition using deeply learned spatially corresponding features. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3809–3818 (2017)

    Google Scholar 

  10. Yuan, X., Shi, P.: A non-linear normalization model for iris recognition. In: Li, S.Z., Sun, Z., Tan, T., Pankanti, S., Chollet, G., Zhang, D. (eds.) IWBRS 2005. LNCS, vol. 3781, pp. 135–141. Springer, Heidelberg (2005). https://doi.org/10.1007/11569947_17

    Chapter  Google Scholar 

  11. Tomeo-Reyes, I., Ross, A., Clark, A.D., Chandran, V.: A biomechanical approach to iris normalization. In: 2015 International Conference on Biometrics (ICB), pp. 9–16. IEEE (2015)

    Google Scholar 

  12. Zhao, Z., Kumar, A.: A deep learning based unified framework to detect, segment and recognize irises using spatially corresponding features. Pattern Recogn. 93, 546–557 (2019)

    Article  Google Scholar 

  13. Kerrigan, D., Trokielewicz, M., Czajka, A., Bowyer, K.W.: Iris recognition with image segmentation employing retrained off-the-shelf deep neural networks. In: Proceedings of the International Conference on Biometrics (ICB), pp. 1–7, June 2019

    Google Scholar 

  14. Proença, H., Alexandre, L.A.: Iris segmentation methodology for non-cooperative recognition. IEE Proc.-Vis. Image Sig. Process. 153(2), 199–205 (2006)

    Article  Google Scholar 

  15. Sutra, G., Garcia-Salicetti, S., Dorizzi, B.: The Viterbi algorithm at different resolutions for enhanced iris segmentation. In: Proceedings of the 5th IAPR International Conference on Biometrics (ICB), pp. 310–316, March 2012

    Google Scholar 

  16. Banerjee, S., Mery, D.: Iris segmentation using geodesic active contours and GrabCut. In: Huang, F., Sugimoto, A. (eds.) PSIVT 2015. LNCS, vol. 9555, pp. 48–60. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30285-0_5

    Chapter  Google Scholar 

  17. Shah, S., Ross, A.: Iris segmentation using geodesic active contours. IEEE Trans. Inf. Forensics Secur. 4(4), 824–836 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, Z., Li, H., Wang, Y., Wang, Z., Sun, Z. (2021). Iris Normalization Beyond Appr-Circular Parameter Estimation. In: Feng, J., Zhang, J., Liu, M., Fang, Y. (eds) Biometric Recognition. CCBR 2021. Lecture Notes in Computer Science(), vol 12878. Springer, Cham. https://doi.org/10.1007/978-3-030-86608-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86608-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86607-5

  • Online ISBN: 978-3-030-86608-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics