Abstract
Sustainable chemical processes should be designed to combine the technological advantages and progress with lower safety risks and minimization of environmental impact such as, for example, reduction of raw materials, energy and water consumption, and avoidance of hazardous waste and pollution with toxic chemical agents. A number of novel eco-friendly chemical technologies have been developed in the recent decades with the help of the eco-innovations approaches and methods such as Life Cycle Analysis, Green Process Engineering, Process Intensification, Process Design for Sustainability, and others. An emerging approach to the sustainable process design in process engineering builds on the innovative solutions inspired from nature. However, the implementation of the eco-friendly technologies often faces secondary ecological problems. The study postulates that the eco-inventive principles identified in natural systems allow to avoid secondary eco-problems and proposes to apply these principles for sustainable design in chemical process engineering. The research work critically examines how this approach differs from the biomimetics, as it is commonly used for copying natural systems. The application of nature-inspired eco-design principles is illustrated with an example of a sustainable technology for extraction of nickel from pyrophyllite.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Trogadas, P., Coppens, M.-O.: Chapter 2 - Nature-inspired chemical engineering: a new design methodology for sustainability. Szekely, G., Livingston, A. (eds.) Sustainable Nanoscale Engineering, pp. 19–31. Elsevier, Amsterdam (2020). https://doi.org/10.1016/B978-0-12-814681-1.00002-3
Santos, A., Barbosa-Póvoa, A., Carvalho, A.: Life cycle assessment in chemical industry – a review. Curr. Opin. Chem. Eng. 26, 139–147 (2019). https://doi.org/10.1016/j.coche.2019.09.009
Constable, D.J.C., Gonzalez, M., Morton, S.A.: Chapter One - Towards more sustainable chemical engineering processes: integrating sustainable and green chemistry into the engineering design process. Ruiz-Mercado, G., Cabezas, H. (eds.) Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes, pp. 1–34. Butterworth-Heinemann, Oxford (2016). https://doi.org/10.1016/B978-0-12-802032-6.00001-3
Reay, D., Ramshaw, C., Harvey, A.: Chapter 2 - Process intensification – an overview. Reay, D., Ramshaw, C., Harvey, A. (eds.) Isotopes in Organic Chemistry, Process Intensification, 2nd edn, pp. 27–55. Butterworth-Heinemann, Oxford (2013). https://doi.org/10.1016/B978-0-08-098304-2.00002-X
Di Martino, Y., Duque, S.E., Reniers, G., Cozzani, V.: Making the chemical and process industries more sustainable: innovative decision-making framework to incorporate technological and non-technological inherently safer design (ISD) opportunities. J. Clean. Product. 296, 126421 (2021)
Livotov, P., Mas’udah, Chandra Sekaran, A.P.: Learning eco-innovation from nature: towards identification of solution principles without secondary eco-problems. In: Cavallucci, D., Brad, S., Livotov, P. (eds.) TFC 2020. IFIP AICT, vol. 597, pp. 172–182. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61295-5_14
AskNature database of the Biomimicry Institute. https://asknature.org/. Accessed 22 Apr 2021
Cohen, Y.H., Reich, Y.: Biomimetic Design Method for Innovation and Sustainability. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33997-9
Vincent, J.: Biomimetics - a review. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 223(8), 919–939 (2009)
VDI Standard 4521: Inventive problem solving with TRIZ. Fundamentals, Terms and Definitions. Beuth Publishers, Duesseldorf, Germany (2016)
Altshuller, G.S.: Creativity as an exact science. The Theory of the Solution of Inventive Problems. Gordon & Breach Science Publishers, New York (1984)
Cavallucci, D., Cascini, G., Duflou, J., Livotov, P., Vaneker, T.: TRIZ and knowledge-based innovation in science and industry. Proc. Eng. 131, 1–2 (2015)
Chandra Sekaran, A.P., Livotov, P., Mas’udah: Classification of TRIZ inventive principles and sub-principles for process engineering problems. In: Benmoussa, R., De Guio, R., Dubois, S., Koziołek, S. (eds.) TFC 2019. IFIP AICT, vol. 572, pp. 314–327. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32497-1_26
Gerbaud, V., Xuereb, C., Coppens, M.-O.: Nature-inspired chemical engineering processes. Chem. Eng. Res. Des. 155, 200–201 (2020)
Savelli, S., Abramov, O.Y.: Nature as a source of function-leading areas for FOS-derived solutions. TRIZ Rev. J. Int. TRIZ Assoc. MATRIZ 1(1), 86–98 (2019)
Fayemi, P.-E., Gilles, M., Gazo, C.: Innovative technical creativity methodology for bio-inspired design. In: Cavallucci, D., De Guio, R., Koziołek, S. (eds.) TFC 2018. IAICT, vol. 541, pp. 253–265. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02456-7_21
Russo, D., Fayemi, P.-E., Spreafico, M., Bersano, G.: Design entity recognition for bio-inspired design supervised state of the art. In: Cavallucci, D., De Guio, R., Koziołek, S. (eds.) TFC 2018. IAICT, vol. 541, pp. 3–13. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02456-7_1
Baumeister, D., Tocke, R., Dwyer, J., Ritter, S.: Biomimicry resource handbook: a seed bank of best practices. Biomimicry 3(8) (2013). Misoula
Livotov, P., et al.: Eco-innovation in process engineering: contradictions, inventive principles and methods. Therm. Sci. Eng. Prog. 9, 52–65 (2019)
Van de Riet, K.: Biomimicry of Mangroves Teaches How to Improve Coastal Barriers. https://www.ansys.com/blog/biomimicry-mangroves-improve-coastal-erosion-coastalbarriers. Accessed 22 Apr 2021
Casner, D., Livotov, P.: Advanced innovation design approach for process engineering. In: Proceedings of the 21st International Conference on Engineering Design (ICED 17), vol. 4, pp. 653–662. Design Methods and Tools, Vancouver (2017)
Livotov, P., et al.: Eco-innovation in process engineering: contradictions, inventive principles and methods. Therm. Sci. Eng. Prog. 9, 52–65 (2019)
Eco-Machines for Water Treatment. https://www.ecolandscaping.org/04/managing-water-in-the-landscape/water-recycling/eco-machines-for-water-treatment/. Accessed 30 May 2021
Flowers, T.J., Colmer, T.D.: Plant salt tolerance: adaptations in halophytes. Ann. Bot. 115(3), 327–331 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Mas’udah, Santosa, S., Livotov, P., Chandra Sekaran, A.P., Rubianto, L. (2021). Nature-Inspired Principles for Sustainable Process Design in Chemical Engineering. In: Borgianni, Y., Brad, S., Cavallucci, D., Livotov, P. (eds) Creative Solutions for a Sustainable Development. TFC 2021. IFIP Advances in Information and Communication Technology, vol 635. Springer, Cham. https://doi.org/10.1007/978-3-030-86614-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-86614-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86613-6
Online ISBN: 978-3-030-86614-3
eBook Packages: Computer ScienceComputer Science (R0)