Abstract
Current conditions limit the direct observation of learning processes useful for teachers design the hypothetical learning trajectories. Fortunately, technology makes it possible to complement direct observation through cognitive and emotional monitoring of students during problem-solving processes. Monitoring the learning process open opportunities as tools can do scaffolding, teacher knowledge about the student’s learning process, teacher knowledge about the results of their scaffolding process, and self-knowledge of subjects about their learning processes. In order to develop technologies that engage learning through learning analytics, this document presents three mathematical games: Towers of Hanoi, Four Knights, and The Jumper, with the respective graphs that represent the problem space and a theoretical proposal to analyze the hypothetical learning trajectories generated in the solution of mathematical games. The theoretical proposal is composed of four hypotheses results from analyzing the students’ behavior while solving the game of the towers of Hanoi. All resources are free and available at git-hub.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amador-Saelices, M.V., Montejo-Gámez, J.: Una trayectoria hipotética de aprendizaje para las expresiones algebraicas basada en análisis de errores. Rev. Épsilon 33(93), 7–30 (2016)
Arnon, I., et al.: From piaget’s theory to apos theory: reflective abstraction in learning mathematics and the historical development of apos theory. In APOS Theory, pp. 5–15. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7966-6_2
Asiala, M., Dubinsky, E., Mathews, D.M., Morics, S., Oktac, A.: Development of students’ understanding of cosets, normality, and quotient groups. J. Math. Behav. 16(3), 241–309 (1997)
Baxter, N., Dubinsky, E., Levin, G.: Learning Discrete Mathematics with ISETL. Springer Science & Business Media, New York (2012)
Beth, E.W., Piaget, J.: Mathematical Epistemology and Psychology, vol. 12. Springer Science & Business Media, Dordrecht (2013)
Brousseau., G.: Iniciación al estudio de la teoría de las situaciones didácticas/Introduction to Study the Theory of Didactic Situations: Didactico/Didactic to Algebra Study, vol. 7. Libros del Zorzal, Buenos Aires (2007)
Campbell, R.L.: Reflecting abstraction in context. Studies in reflecting abstraction, pp. 1–27 (2001)
Clements, D.H., Sarama, J.: Learning and Teaching Early Math: The Learning Trajectories Approach. Routledge, London (2014)
Dubinsky, E.: Teaching mathematical induction II. J. Math. Behav. 8(3), 285–304 (1989)
Dubinsky, E.: Reflective abstraction in advanced mathematical thinking. In Advanced Mathematical Thinking, pp. 95–126. Springer, Dordrecht (2002)
Dubinsky, E., Lewin, P.: Reflective abstraction and mathematics education: the genetic decomposition of induction and compactness. J. Math. Behav. (1986)
Dubinsky, E., McDonald, M.A.: Apos: a constructivist theory of learning in undergraduate mathematics education research. In: The Teaching and Learning of Mathematics at University Level, pp. 275–282. Springer, Dordrecht (2001)
Elizondo-Ramírez, R., Hernández-Solís, A.: Hypothetical learning trajectories that use digital technology to tackle an optimization problem. Int. J. Technol. Math. Educ. 24(2), 51–57 (2017)
Ellis, A.B.: A taxonomy for categorizing generalizations: generalizing actions and reflection generalizations. J. Learn. Sci. 16(2), 221–262 (2007)
Gallagher, J.M.: Reflexive abstraction and education. In: Knowledge and Development, pp. 1–20. Springer, Boston (1978)
Gravemeijer, K.: RME theory and mathematics teacher education. In: International Handbook of Mathematics Teacher Education, vol. 2, pp. 283–302. Brill Sense (2008)
Leon, O.L., Palomá, N.A., Jiménez, N., Guilombo, D.M., González, S.P.: Ambientes de aprendizaje de la forma y el número: diseños accesibles y trayectorias hipotéticas de aprendizaje. RECME-Rev. Colomb. Mat. Educ. 3(2), 3–16 (2018)
Martínez Cardenas, E.A., et al.: Juego y trayectorias de aprendizaje de la aritmética inicial en ambientes de aprendizaje que incluyen estudiantes en situación de discapacidad intelectual (2019)
Medina, C.R.P.: Enfoques teóricos en investigación para la integración de la tecnología digital en la educación matemática. Perspectiva Educ. 53(2), 129–150 (2014)
Páez, J.J., Leon, O.O., Cobos, J.J., Romero, J.J., Martinez, E.E., Betancur, J.J.: Use of digital tools to promote understanding of the learning process in the tower of Hanoi game. In: 2020 the 4th International Conference on Big Data Research (ICBDR 2020), pp. 26–29 (2020)
Palomá Barrera, N.A., et al.: Una trayectoria real del juego la escalera vinculada a hipótesis que potencian el aprendizaje de las funciones desde poblaciones diversas (2018)
Piaget, J.: The Development of Thought: Equilibration of Cognitive Structures(Trans A. Rosin). Viking, New York (1977)
Piaget, J.: Adaptation and Intelligence (S. Eames, Trans.). University of Chicago press, Chicago (original published 1974) (1980)
Piaget, J., Duckworth, E.: Genetic epistemology. Am. Behav. Sci. 13(3), 459–480 (1970)
Rodriguez, J.J.P., Guerrero, E.G.: Human-robot scaffolding: a novel perspective to use robots such as learning tools. In: 2017 18th International Conference on Advanced Robotics (ICAR), pp. 426–431. IEEE (2017)
Rodríguez Molina, L.F., et al.: Trayectoria hipotética de aprendizaje: Aprendizaje de las operaciones suma y resta en aulas inclusivas con incorporación tecnológica (2016)
Simon, M.A.: Reconstructing mathematics pedagogy from a constructivist perspective. J. Res. Math. Educ. 26, 114–145 (1995)
Simon, M.A., Tzur, R.: Explicating the role of mathematical tasks in conceptual learning: an elaboration of the hypothetical learning trajectory. Math. Thinking Learn. 6(2), 91–104 (2004)
Simon, M.A., Tzur, R., Heinz, K., Kinzel, M.: Explicating a mechanism for conceptual learning: Elaborating the construct of reflective abstraction. J. Res. Math. Educ. 35, 305–329 (2004)
Sriraman, B.: Reflective abstraction, uniframes and the formulation of generalizations. J. Math. Behav. 23(2), 205–222 (2004)
Treffers, A.: Mathematics education library. three dimensions: a model of goal and theory description in mathematics instruction-the wiskobas project (1987)
Von Glasersfeld, E.: Radical Constructivism: A Way of Knowing and Understanding, vol. 10, pp. 9780203454220. Falmer, London (1995)
Acknowledged
The authors are grateful for the support of the Universidad Distrital Francisco José de Caldas.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Páez, J., Cobos, J., Aguirre, D., Molina, R., Lievano, L. (2022). Learning AnalyTICs: Exploring the Hypothetical Learning Trajectories Through Mathematical Games. In: De la Prieta, F., et al. Methodologies and Intelligent Systems for Technology Enhanced Learning, 11th International Conference. MIS4TEL 2021. Lecture Notes in Networks and Systems, vol 326. Springer, Cham. https://doi.org/10.1007/978-3-030-86618-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-86618-1_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86617-4
Online ISBN: 978-3-030-86618-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)