Skip to main content

Continuous Extension of Euler-Maruyama Method for Stochastic Differential Equations

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

In this work we focus on the development of continuous extension of Euler-Maruyama method, which is used to numerically approximate the solution of Stochastic Differential Equations (SDEs). We aim to provide an approximation of a given SDE in terms of a piecewise polynomial, because, as it is known in the deterministic case, a dense output allows to provide a more efficient error estimate and it is very effective for a variable step-size implementation. Hence, this contribution aims to provide a first building block in such directions, consisting in the development of the scheme.

The authors are members of the GNCS group. This work is supported by GNCS-INDAM project and by PRIN2017-MIUR project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulle, A.: Explicit methods for stiff stochastic differential equations. In: Engquist, B., Runborg, O., Tsai, Y,H. (eds.) Numerical Analysis of Multiscale Computations, LNCSE, vol. 82, pp. 1–22. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-21943-6_1

  2. Abdulle, A., Almuslimani, I., Vilmart, G.: Optimal explicit stabilized integrator of weak order 1 for stiff and ergodic stochastic differential equations. SIAM-ASA J. Uncertain. 6(2), 937–964 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Abdulle, A., Blumenthal, A.: Stabilized multilevel Monte Carlo method for stiff stochastic differential equations. J. Comput. Phys. 251, 445–460 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abdulle, A., Cirilli, S.: S-ROCK: Chebyshev methods for stiff stochastic differential equations. SIAM J. Sci. Comput. 30(2), 997–1014 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abdulle, A., Cirilli, S.: Stabilized methods for stiff stochastic systems. C. R. Math. 345(10), 593–598 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abdulle, A., Vilmart, G., Zygalakis, K.C.: Mean-square A-stable diagonally drift-implicit integrators of weak second order for stiff Itô stochastic differential equations. BIT Numer. Math. 53(4), 827–840 (2013)

    Article  MATH  Google Scholar 

  7. Abdulle, A., Vilmart, G., Zygalakis, K.C.: Weak second order explicit stabilized methods for stiff stochastic differential equations. SIAM J. Sci. Comput. 35(4), A1792–A1814 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  9. Burrage, K., Tian, T.: Stiffly accurate Runge-Kutta methods for stiff stochastic differential equations. Comput. Phys. Commun. 142(1–3), 186–190 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burrage, K., Burrage, P.M.: A variable stepsize implementation for stochastic differential equations. SIAM J. Sci. Comput. 24(3), 848–864 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burrage, K., Burrage, P.M., Herdiana, R.: Adaptive stepsize based on control theory for stochastic differential equations. J. Comput. Appl. Math. 170(2–2), 317–336 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burrage, K., Burrage, P.M.: Low rank Runge-Kutta methods, symplecticity and stochastic Hamiltonian problems with additive noise. J. Comput. Appl. Math. 236(16), 3920–3930 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burrage, P.M., Burrage, K.: Structure-preserving Runge-Kutta methods for stochastic Hamiltonian equations with additive noise. Numer. Algorithms 65(3), 519–532 (2013). https://doi.org/10.1007/s11075-013-9796-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Burrage, K., Tian, T.: The composite Euler method for stiff stochastic differential equations. J. Comput. Appl. Math. 131(1–2), 407–426 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 3rd edn. Wiley, Chichester (2016)

    Book  MATH  Google Scholar 

  16. Capobianco, G., Conte, D., Paternoster, B.: Construction and implementation of two-step continuous methods for Volterra Integral Equations. Appl. Numer. Math. 119, 239–247 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cardone, A., Conte, D.: Multistep collocation methods for Volterra integro-differential equations. Appl. Math. Comput. 221, 770–785 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Cardone, A., Conte, D., D’Ambrosio, R., Paternoster, B.: Collocation methods for Volterra integral and integro-differential equations: a review. Axioms 7(3), 45 (2018)

    Article  MATH  Google Scholar 

  19. Chen, C., Cohen, D., D’Ambrosio, R., Lang, A.: Drift-preserving numerical integrators for stochastic Hamiltonian systems. Adv. Comput. Math. 46(2), 1–22 (2020). https://doi.org/10.1007/s10444-020-09771-5

    Article  MathSciNet  MATH  Google Scholar 

  20. Citro, V., D’Ambrosio, R., Di Giovacchino, S.: A-stability preserving perturbation of Runge-Kutta methods for stochastic differential equations. Appl. Math. Lett. 102, 106098 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cohen, D., Sigg, M.: Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations. Numer. Math. 121(1), 1–29 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Conte, D., Del Prete, I.: Fast collocation methods for Volterra integral equations of convolution type. J. Comput. Appl. Math. 196(2), 652–663 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Conte, D., Paternoster, B.: Multistep collocation methods for Volterra integral equations. Appl. Numer. Math. 59(8), 1721–1736 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Conte, D., D’Ambrosio, R., Paternoster, B.: Two-step diagonally-implicit collocation based methods for Volterra Integral Equations. Appl. Numer. Math. 62(10), 1312–1324 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. D’Ambrosio, R., Ferro, M., Jackiewicz, Z., Paternoster, B.: Two-step almost collocations methods for ordinary differential equations. Numer. Algorithms 53(2–3), 195–217 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. D’Ambrosio, R., Giordano, G., Paternoster, B., Ventola, A.: Perturbative analysis of stochastic Hamiltonian problems under time discretizations. Appl. Math. Lett. 120, 107223 (2021)

    Article  MathSciNet  Google Scholar 

  27. D’Ambrosio, R., Paternoster, B.: Multivalue collocation methods free from order reduction. J. Comput. Appl. Math. 387, 112515 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. D’Ambrosio, R., Di Giovacchino, S.: Mean-square contractivity of stochastic \(\vartheta \)-methods. Commun. Nonlinear Sci. Numer. Simul. 96, 105671 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. D’Ambrosio, R., Di Giovacchino, S.: Nonlinear stability issues for stochastic Runge-Kutta methods. Commun. Nonlinear Sci. Numer. Simul. 94, 105549 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. D’Ambrosio, R., Jackiewicz, Z.: Construction and implementation of highly stable two-step continuous methods for stiff differential systems. Math. Comput. Simul. 81(9), 1707–1728 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. D’Ambrosio, R., Moccaldi, M., Paternoster, B.: Numerical preservation of long-term dynamics by stochastic two-step methods. Discr. Cont. Dyn. Sys. Ser. B 23(7), 2763–2773 (2018)

    MathSciNet  MATH  Google Scholar 

  32. D’Ambrosio, R., Scalone, C.: Two-step Runge-Kutta methods for stochastic differential equations. Appl. Math. Comput. 403, 125930 (2021)

    MathSciNet  Google Scholar 

  33. Gard, T.C.: Introduction to Stochastic Differential Equations. Marcel Dekker Inc., New York-Basel (1988)

    MATH  Google Scholar 

  34. Gardiner, C.Q.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer Series in Synergetics. Springer, Heidelberg (2009)

    Google Scholar 

  35. Haghighi, A., Hosseini, S.M., Rössler, A.: Diagonally drift-implicit Runge-Kutta methods of strong order one for stiff stochastic differential systems. J. Comput. Appl. Math. 293, 82–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Haghighi, A., Rössler, A.: Split-step double balanced approximation methods for stiff stochastic differential equations. Int. J. Comp. Math. 96(5), 1030–1047 (2019)

    Article  MathSciNet  Google Scholar 

  37. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-642-05221-7

  38. Han, M., Ma, Q., Ding, X.: High-order stochastic symplectic partitioned Runge-Kutta methods for stochastic Hamiltonian systems with additive noise. Appl. Math. Comput. 346, 575–593 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Higham, D.J.: Mean-square and asymptotic stability of the stochastic theta method. SIAM J. Numer. Anal. 38(3), 753–769 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Higham, D., Kloeden, P.E.: An Introduction to the Numerical Simulation of Stochastic Differential Equations. SIAM, Philadelphia (2021)

    Book  MATH  Google Scholar 

  42. Hong, J., Xu, D., Wang, P.: Preservation of quadratic invariants of stochastic differential equations via Runge-Kutta methods. Appl. Numer. Math. 87, 38–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kloeden, P.E., Platen, E.: The Numerical Solution of Stochastic Differential Equations. Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-662-12616-5

  44. Komori, Y., Burrage, K.: A stochastic exponential Euler scheme for simulation of stiff biochemical reaction systems. BIT Numer. Math. 54(4), 1067–1085 (2014). https://doi.org/10.1007/s10543-014-0485-1

    Article  MathSciNet  MATH  Google Scholar 

  45. Li, T., Abdulle, A., Weinan, E.: Effectiveness of implicit methods for stiff stochastic differential equations. Commun. Comp. Phys. 3(2), 295–307 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Milstein, G.N., Platen, E., Schurz, H.: Balanced implicit methods for stiff stochastic systems. SIAM J. Numer. Anal. 35(3), 1010–1019 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-10063-9

    Book  MATH  Google Scholar 

  48. Rössler, A.: Runge-Kutta methods for Itô stochastic differential equations with scalar noise. BIT Numer. Math. 46(1), 97–110 (2006)

    Article  MATH  Google Scholar 

  49. Tang, X., Xiao, A.: Efficient weak second-order stochastic Runge-Kutta methods for Itô stochastic differential equations. BIT Numer. Math. 57, 241–260 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tian, T., Burrage, K.: Implicit Taylor methods for stiff stochastic differential equations. Appl. Numer. Math. 38(1–2), 167–185 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Giordano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Conte, D., D’Ambrosio, R., Giordano, G., Paternoster, B. (2021). Continuous Extension of Euler-Maruyama Method for Stochastic Differential Equations. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics