Skip to main content

Reasonable Non-conventional Generator of Random Linear Chains Based on a Simple Self-avoiding Walking Process: A Statistical and Fractal Analysis

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Models based on self-excluded walks have been widely used to generate random linear chains. In this work, we present an algorithm capable of generating linear strings in two and three dimensions, in a simple and efficient way. The discrete growth process of the chains takes place in a finite time, in a network without pre-established boundary conditions and without the need to explore the entire configurational space. The computational processing time and the length of the strings depending on the number of trials \({N}^{^{\prime}}\). This number is always less than the real number of steps in the chain, N. From the statistical analysis of the characteristic distances, the radius of gyration (\({R}_{g}\)), and the end-to-end distance (\({R}_{ee}\)), we make a morphological description of the chains and we study the dependence of this quantities on the number of steps, N. The universal critical exponent obtained are in very good agreement with previous values reported in literature. We also study fractal characteristics of the chains using two different methods, Box-Counting Dimension or Capacity Dimension and Correlation Dimension. The studies revealed essential differences between chains of different dimensions, for the two methods used, showing that three-dimensional chains are more correlated than two-dimensional chains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)

    Google Scholar 

  2. Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhauser, Basel (1953)

    MATH  Google Scholar 

  3. Yamakawa, H.: Modern Theory of Polymer Solutions. Harper and Row, New York (1971)

    Google Scholar 

  4. Wilson, K.G., Kogut, J.: The renormalization group and the expansion. Phys. Rep. 12(2), 75–199 (1974)

    Google Scholar 

  5. Sokal, A.D.: Molecular Dynamics Simulations in Polymer Sciences. Oxford University Press, New York (1995)

    Google Scholar 

  6. Guttmann, A.J., Conway, A.R.: Square lattice self-avoiding walks and polygons. Ann. Comb. 5(3), 319–345 (2001)

    Article  MathSciNet  Google Scholar 

  7. Jensen, I.: Enumeration of self-avoiding walks on the square lattice. J. Phys. A Math. Gen. 37(21), 5503–5524 (2004)

    Google Scholar 

  8. Li, B., Neal, M, Sokal, A.D.: Critical exponent hyper scaling, and universal amplitude ratios for two and three-dimensional self-avoiding walks. J. Stat. Phys. 80(3), 661–754 (1995)

    Google Scholar 

  9. Hara, T., Slade, G., Sokal, A.D.: New lower bounds on the self-avoiding walk connective constant. J. Stat. Phys. 72(3), 479–517 (1993)

    Google Scholar 

  10. Slade, G.: Self-avoiding walk, spin systems and renormalization. Proc. R. Soc. A 475(2221), 20180549 (2019)

    Google Scholar 

  11. Amit, D.J., Parisi, G., Paliti, L.: Asymptotic behavior of the “true” self-avoiding walk. Phys. Rev. B 27(3), 1635–1645 (1983)

    Google Scholar 

  12. Rubinstein, M., Colby, R.H.: Polymer Physics. Oxford University Press, New York (2003)

    Google Scholar 

  13. Teraoka, I.: Polymer Solutions: An Introduction to Physical Properties. Wiley Inter-science, New York (2002)

    Book  Google Scholar 

  14. Bhattarcharjee, S.M., Giacometti, A., Maritan, A.: Flory theory for polymers. J. Phys. Condens. Matter 25, 503101 (2013)

    Google Scholar 

  15. Isaacson, J., Lubensky, T.C.: Flory exponent for generalized polymer problems. J. Phys. Lett. 41(19), 469–471 (1980)

    Article  Google Scholar 

  16. Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman and company, New York (1982)

    MATH  Google Scholar 

  17. Banerji, A., Ghosh, I.: Fractal symmetry of proteins interior: what have we learned. Cell. Mol. Life Sci. 68(16), 2711–2737 (2011)

    Google Scholar 

  18. Dewey, T.G.: Fractals in Molecular Biophysics. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  19. Maritan, A.: Random walk and the ideal chain problem on self-similar structures. Phys. Rev. Lett. 62(24), 2845–2848 (1989)

    Google Scholar 

  20. Kawakatsu, T.: Statistical Physics of Polymers: An Introduction. Springer-Verlag, Heidelberg (2004)

    Google Scholar 

  21. Rammal, R., Toulouse, G., Vannimenus, J.: Self-avoiding walks on fractal spaces: exact results and Flory approximation. J. Phys. 45(3), 389–394 (1984)

    Google Scholar 

  22. Takayasu, H.: Fractals in the Physical Sciences. Manchester University Press, New York (1990)

    MATH  Google Scholar 

  23. Feder, J.: Fractals. Physics of Solids and Liquids. Springer-US, New York (1988)

    Google Scholar 

  24. Theiler, J.: Estimating fractal dimension. J. Opt. Soc. Am. A 7(6), 1055–1073 (1990)

    Google Scholar 

  25. Nayfeh, A., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley Series in Nonlinear Sciences, Germany (2008)

    Google Scholar 

  26. Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983)

    Google Scholar 

  27. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D Nonlin. Phenom. 9(1), 189–208 (1983)

    Google Scholar 

  28. Lhuillier, D.: A simple model for polymeric fractals in a good solvent and an improved version of the Flory approximation. J. Phys. Fr. 49(5), 705–710 (1988)

    Google Scholar 

  29. Victor, J.M., Lhuillier, D.: The gyration radius distribution of two-dimensional polymers chains in a good solvent. J. Chem. Phys. 92(2), 1362–1364 (1990)

    Google Scholar 

  30. McKenzie, D.S., Moore, M.A.: Shape of self-avoiding walk or polymer chain. J. Phys. A Gen. Phys. 4(5), L82–L85 (1971)

    Google Scholar 

  31. des Cloizeaux, J.: Lagrangian theory for self-avoiding random chain. Phys. Rev. A. 10, 1665 (1974)

    Google Scholar 

  32. des Cloizeaux, J., Jannink, G.: Polymers in solution: their modelling and structure. Oxford Science Publications. Clarendon Press, Oxford (1990)

    Google Scholar 

  33. Caracciolo, S., Causo, M.S., Pelissetto, A.: End-to-end distribution function for dilute polymers. J. Chem. Phys. 112(17), 7693–7710 (2000)

    Google Scholar 

  34. Vettorel, T., Besold, G., Kremer, K.: Fluctuating soft-sphere approach to coarse-graining of polymer models. Soft Matter 6, 2282–2292 (2010)

    Article  Google Scholar 

  35. Bernal, D.R.: PhD Thesis, http://www.ppgbea.ufrpe.br/sites/www.ppgbea.ufrpe.br/files/documentos/tese_david_roberto_bernal.pdf. Accessed 21 June 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramón E. R. González or Carlos Andrés Collazos-Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avellaneda B., D.R., González, R.E.R., Collazos-Morales, C.A., Ariza-Colpas, P. (2021). Reasonable Non-conventional Generator of Random Linear Chains Based on a Simple Self-avoiding Walking Process: A Statistical and Fractal Analysis. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics