Abstract
Models based on self-excluded walks have been widely used to generate random linear chains. In this work, we present an algorithm capable of generating linear strings in two and three dimensions, in a simple and efficient way. The discrete growth process of the chains takes place in a finite time, in a network without pre-established boundary conditions and without the need to explore the entire configurational space. The computational processing time and the length of the strings depending on the number of trials \({N}^{^{\prime}}\). This number is always less than the real number of steps in the chain, N. From the statistical analysis of the characteristic distances, the radius of gyration (\({R}_{g}\)), and the end-to-end distance (\({R}_{ee}\)), we make a morphological description of the chains and we study the dependence of this quantities on the number of steps, N. The universal critical exponent obtained are in very good agreement with previous values reported in literature. We also study fractal characteristics of the chains using two different methods, Box-Counting Dimension or Capacity Dimension and Correlation Dimension. The studies revealed essential differences between chains of different dimensions, for the two methods used, showing that three-dimensional chains are more correlated than two-dimensional chains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)
Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhauser, Basel (1953)
Yamakawa, H.: Modern Theory of Polymer Solutions. Harper and Row, New York (1971)
Wilson, K.G., Kogut, J.: The renormalization group and the expansion. Phys. Rep. 12(2), 75–199 (1974)
Sokal, A.D.: Molecular Dynamics Simulations in Polymer Sciences. Oxford University Press, New York (1995)
Guttmann, A.J., Conway, A.R.: Square lattice self-avoiding walks and polygons. Ann. Comb. 5(3), 319–345 (2001)
Jensen, I.: Enumeration of self-avoiding walks on the square lattice. J. Phys. A Math. Gen. 37(21), 5503–5524 (2004)
Li, B., Neal, M, Sokal, A.D.: Critical exponent hyper scaling, and universal amplitude ratios for two and three-dimensional self-avoiding walks. J. Stat. Phys. 80(3), 661–754 (1995)
Hara, T., Slade, G., Sokal, A.D.: New lower bounds on the self-avoiding walk connective constant. J. Stat. Phys. 72(3), 479–517 (1993)
Slade, G.: Self-avoiding walk, spin systems and renormalization. Proc. R. Soc. A 475(2221), 20180549 (2019)
Amit, D.J., Parisi, G., Paliti, L.: Asymptotic behavior of the “true” self-avoiding walk. Phys. Rev. B 27(3), 1635–1645 (1983)
Rubinstein, M., Colby, R.H.: Polymer Physics. Oxford University Press, New York (2003)
Teraoka, I.: Polymer Solutions: An Introduction to Physical Properties. Wiley Inter-science, New York (2002)
Bhattarcharjee, S.M., Giacometti, A., Maritan, A.: Flory theory for polymers. J. Phys. Condens. Matter 25, 503101 (2013)
Isaacson, J., Lubensky, T.C.: Flory exponent for generalized polymer problems. J. Phys. Lett. 41(19), 469–471 (1980)
Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman and company, New York (1982)
Banerji, A., Ghosh, I.: Fractal symmetry of proteins interior: what have we learned. Cell. Mol. Life Sci. 68(16), 2711–2737 (2011)
Dewey, T.G.: Fractals in Molecular Biophysics. Oxford University Press, New York (1997)
Maritan, A.: Random walk and the ideal chain problem on self-similar structures. Phys. Rev. Lett. 62(24), 2845–2848 (1989)
Kawakatsu, T.: Statistical Physics of Polymers: An Introduction. Springer-Verlag, Heidelberg (2004)
Rammal, R., Toulouse, G., Vannimenus, J.: Self-avoiding walks on fractal spaces: exact results and Flory approximation. J. Phys. 45(3), 389–394 (1984)
Takayasu, H.: Fractals in the Physical Sciences. Manchester University Press, New York (1990)
Feder, J.: Fractals. Physics of Solids and Liquids. Springer-US, New York (1988)
Theiler, J.: Estimating fractal dimension. J. Opt. Soc. Am. A 7(6), 1055–1073 (1990)
Nayfeh, A., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley Series in Nonlinear Sciences, Germany (2008)
Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983)
Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D Nonlin. Phenom. 9(1), 189–208 (1983)
Lhuillier, D.: A simple model for polymeric fractals in a good solvent and an improved version of the Flory approximation. J. Phys. Fr. 49(5), 705–710 (1988)
Victor, J.M., Lhuillier, D.: The gyration radius distribution of two-dimensional polymers chains in a good solvent. J. Chem. Phys. 92(2), 1362–1364 (1990)
McKenzie, D.S., Moore, M.A.: Shape of self-avoiding walk or polymer chain. J. Phys. A Gen. Phys. 4(5), L82–L85 (1971)
des Cloizeaux, J.: Lagrangian theory for self-avoiding random chain. Phys. Rev. A. 10, 1665 (1974)
des Cloizeaux, J., Jannink, G.: Polymers in solution: their modelling and structure. Oxford Science Publications. Clarendon Press, Oxford (1990)
Caracciolo, S., Causo, M.S., Pelissetto, A.: End-to-end distribution function for dilute polymers. J. Chem. Phys. 112(17), 7693–7710 (2000)
Vettorel, T., Besold, G., Kremer, K.: Fluctuating soft-sphere approach to coarse-graining of polymer models. Soft Matter 6, 2282–2292 (2010)
Bernal, D.R.: PhD Thesis, http://www.ppgbea.ufrpe.br/sites/www.ppgbea.ufrpe.br/files/documentos/tese_david_roberto_bernal.pdf. Accessed 21 June 2021
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Avellaneda B., D.R., González, R.E.R., Collazos-Morales, C.A., Ariza-Colpas, P. (2021). Reasonable Non-conventional Generator of Random Linear Chains Based on a Simple Self-avoiding Walking Process: A Statistical and Fractal Analysis. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-86653-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86652-5
Online ISBN: 978-3-030-86653-2
eBook Packages: Computer ScienceComputer Science (R0)