Skip to main content

Modeling and Identification of Electromechanical Systems Using Orthonormal Jacobi Functions

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12949))

Included in the following conference series:

Abstract

Solving parameter identification and structure identification in electromechanical systems is relevant in applications for diagnostics of the technical condition of technical systems, as well as in the development of algorithms for controlling machines and mechanisms. Impulse response functions, correlation and autocorrelation coordinate functions are used as dynamic characteristics. The correspondent models unambiguously give an idea of the mathematical description of a linear or linearized electromechanical system. The methods of spectral description of the dynamic characteristics, based on Fourier transforms, are quite effective in relation to physically realizable systems under normal operating conditions. The paper aims to present new approaches to the development of algorithms for identifying electromechanical systems based on the study of the properties of synthesized transformed orthonormal Jacobi functions and the design of spectral models of the impulse response functions of electromechanical systems. The methods of the theory of spectral and operator transformations, as well as functional analysis, are used in the study. The results demonstrate the success of algorithms for nonparametric identification of linear or linearized electromechanical systems based on spectral models of their impulse response functions in the basis of synthesized generalized orthonormal Jacobi functions. The results of the study can be used in practice for the diagnostics and development of control systems for electric drives of machines and installations with changing parameters or structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saushev, A., Antonenko, S., Lakhmenev, A., Monahov, A.: Parametric identification of electric drives based on performance limits. In: Murgul, V., Pasetti, M. (eds.) International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018. EMMFT-2018 2018. Advances in Intelligent Systems and Computing, vol. 982. Springer, Cham. (2020). https://doi.org/10.1007/978-3-030-19756-8_43

  2. Brunot, M., Janot, A., Carrillo, F., Garnier, H., Vandanjon, P.O., Gautier, M.: Physical parameter identification of a one-degree-of-freedom electromechanical system operating in closed loop. IFAC-PapersOnLine 48(28), 823–828 (2015). https://doi.org/10.1016/j.ifacol.2015.12.231

    Article  Google Scholar 

  3. Janot, A., Young, P.C., Gautier, M.: Identification and control of electro-mechanical systems using state-dependent parameter estimation. Int. J. Control 90(4), 643–660 (2017). https://doi.org/10.1080/00207179.2016.1209565

    Article  MathSciNet  MATH  Google Scholar 

  4. Golykov, A.D., Gryzlov, A.A., Bukhanov, S.S.: Parametric identification of mechatronic system with induction and synchronous electric drive. In: Proceedings of the 2017 International Conference “Quality Management, Transport and Information Security, Information Technologies”, IT and QM and IS 2017, pp. 319–322 (2017). https://doi.org/10.1109/ITMQIS.2017.8085823

  5. Miskin, A.R., Himakuntla, U.M.R., Achary, K.K., Parmar Azan, M., Mungara, H.K., Rao, R.: Simulation diagnostics approach for source identification and quantification in NVH development of electric motors. In: Proceedings of 2020 International Congress on Noise Control Engineering, INTER-NOISE 2020 (2020)

    Google Scholar 

  6. Garnier, H., Gilson, M., Young, P.C., Huselstein, E.: An optimal IV technique for identifying continuous-time transfer function model of multiple input systems. Control. Eng. Pract. 15(4), 471–486 (2007). https://doi.org/10.1016/j.conengprac.2006.09.004

    Article  Google Scholar 

  7. Savel’ev, A.N., Kipervasser, M.V., Anikanov, D.S.: Conveyer-belt accidents in mining and metallurgy. Steel Transl. 45(12), 927–931 (2015). https://doi.org/10.3103/S0967091215120116

    Article  Google Scholar 

  8. Sadridinov, A.B.: Analysis of energy performance of heading sets of equipment at a coal mine. Gornye nauki i tekhnologii = Min. Sci. Technol. (Russia) 5(4), 367–375 (2020). https://doi.org/10.17073/2500-0632-2020-4-367-375

  9. Pevzner, L., Dmitrieva, V.: System of automatic load stabilization of mining belt-conveyors. In: Proceedings of the 14th International Symposium on Mine Planning and Equipment Selection, MPES 2005 and the 5th International Conference on Computer Applications in the Minerals Industries, CAMI 2005, pp. 1050–1058 (2005)

    Google Scholar 

  10. Melezhik, R.S., Vlasenko, D.A.: Load simulation and substantiation of design values of a pin flexible coupling with a flexible disk-type element. Gornye nauki i tekhnologii = Mining Science and Technology (Russia) 6(2), 133–144 (2021). URL: https://mst.misis.ru/jour/issue/archive

  11. Kefal, A., Maruccio, C., Quaranta, G., Oterkus, E.: Modelling and parameter identification of electromechanical systems for energy harvesting and sensing. Mech. Syst. Sig. Process. 121, 890–912 (2019). https://doi.org/10.1016/j.ymssp.2018.10.042

    Article  Google Scholar 

  12. Kluchev, V.I.: Theory of Electric Drives. [Teoriya elektroprivoda]. Energoatomizdat, Moscow (1985)

    Google Scholar 

  13. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  14. Chen, T., Ljung, L.: Regularized system identification using orthonormal basis functions. In: European Control Conference, ECC 2015, pp. 1291–1296 (2015). https://doi.org/10.1109/ECC.2015.7330716

  15. Bessonov, A.A., Zagashvili, Y., Markelov, A.S.: Methods and Means of Identification of Dynamic Objects. Energoatomizdat, Leningrad (1989)

    Google Scholar 

  16. Tiels, K., Schoukens, J.: Wiener system identification with generalized orthonormal basis functions. Automatica 50(12), 3147–3154 (2014). https://doi.org/10.1016/j.automatica.2014.10.010

    Article  MathSciNet  MATH  Google Scholar 

  17. Bouzrara, K., Garna, T., Ragot, J., Messaoud, H.: Online identification of the ARX model expansion on Laguerre orthonormal bases with filters on model input and out-put. Int. J. Control 86(3), 369–385 (2013). https://doi.org/10.1080/00207179.2012.732710

    Article  MATH  Google Scholar 

  18. Karsky, V.: An Improved method for parametrising generalized Laguerre functions to compute the inverse Laplace transform of fractional order transfer functions. In: AIP Conference Proceedings, vol. 2293 (2020). https://doi.org/10.1063/5.0026713

  19. Suetin, P.K.: Classical Orthogonal Polynomials. Nauka, Moscow (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Petrov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petrov, V. (2021). Modeling and Identification of Electromechanical Systems Using Orthonormal Jacobi Functions. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics