Abstract
Solving parameter identification and structure identification in electromechanical systems is relevant in applications for diagnostics of the technical condition of technical systems, as well as in the development of algorithms for controlling machines and mechanisms. Impulse response functions, correlation and autocorrelation coordinate functions are used as dynamic characteristics. The correspondent models unambiguously give an idea of the mathematical description of a linear or linearized electromechanical system. The methods of spectral description of the dynamic characteristics, based on Fourier transforms, are quite effective in relation to physically realizable systems under normal operating conditions. The paper aims to present new approaches to the development of algorithms for identifying electromechanical systems based on the study of the properties of synthesized transformed orthonormal Jacobi functions and the design of spectral models of the impulse response functions of electromechanical systems. The methods of the theory of spectral and operator transformations, as well as functional analysis, are used in the study. The results demonstrate the success of algorithms for nonparametric identification of linear or linearized electromechanical systems based on spectral models of their impulse response functions in the basis of synthesized generalized orthonormal Jacobi functions. The results of the study can be used in practice for the diagnostics and development of control systems for electric drives of machines and installations with changing parameters or structures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Saushev, A., Antonenko, S., Lakhmenev, A., Monahov, A.: Parametric identification of electric drives based on performance limits. In: Murgul, V., Pasetti, M. (eds.) International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018. EMMFT-2018 2018. Advances in Intelligent Systems and Computing, vol. 982. Springer, Cham. (2020). https://doi.org/10.1007/978-3-030-19756-8_43
Brunot, M., Janot, A., Carrillo, F., Garnier, H., Vandanjon, P.O., Gautier, M.: Physical parameter identification of a one-degree-of-freedom electromechanical system operating in closed loop. IFAC-PapersOnLine 48(28), 823–828 (2015). https://doi.org/10.1016/j.ifacol.2015.12.231
Janot, A., Young, P.C., Gautier, M.: Identification and control of electro-mechanical systems using state-dependent parameter estimation. Int. J. Control 90(4), 643–660 (2017). https://doi.org/10.1080/00207179.2016.1209565
Golykov, A.D., Gryzlov, A.A., Bukhanov, S.S.: Parametric identification of mechatronic system with induction and synchronous electric drive. In: Proceedings of the 2017 International Conference “Quality Management, Transport and Information Security, Information Technologies”, IT and QM and IS 2017, pp. 319–322 (2017). https://doi.org/10.1109/ITMQIS.2017.8085823
Miskin, A.R., Himakuntla, U.M.R., Achary, K.K., Parmar Azan, M., Mungara, H.K., Rao, R.: Simulation diagnostics approach for source identification and quantification in NVH development of electric motors. In: Proceedings of 2020 International Congress on Noise Control Engineering, INTER-NOISE 2020 (2020)
Garnier, H., Gilson, M., Young, P.C., Huselstein, E.: An optimal IV technique for identifying continuous-time transfer function model of multiple input systems. Control. Eng. Pract. 15(4), 471–486 (2007). https://doi.org/10.1016/j.conengprac.2006.09.004
Savel’ev, A.N., Kipervasser, M.V., Anikanov, D.S.: Conveyer-belt accidents in mining and metallurgy. Steel Transl. 45(12), 927–931 (2015). https://doi.org/10.3103/S0967091215120116
Sadridinov, A.B.: Analysis of energy performance of heading sets of equipment at a coal mine. Gornye nauki i tekhnologii = Min. Sci. Technol. (Russia) 5(4), 367–375 (2020). https://doi.org/10.17073/2500-0632-2020-4-367-375
Pevzner, L., Dmitrieva, V.: System of automatic load stabilization of mining belt-conveyors. In: Proceedings of the 14th International Symposium on Mine Planning and Equipment Selection, MPES 2005 and the 5th International Conference on Computer Applications in the Minerals Industries, CAMI 2005, pp. 1050–1058 (2005)
Melezhik, R.S., Vlasenko, D.A.: Load simulation and substantiation of design values of a pin flexible coupling with a flexible disk-type element. Gornye nauki i tekhnologii = Mining Science and Technology (Russia) 6(2), 133–144 (2021). URL: https://mst.misis.ru/jour/issue/archive
Kefal, A., Maruccio, C., Quaranta, G., Oterkus, E.: Modelling and parameter identification of electromechanical systems for energy harvesting and sensing. Mech. Syst. Sig. Process. 121, 890–912 (2019). https://doi.org/10.1016/j.ymssp.2018.10.042
Kluchev, V.I.: Theory of Electric Drives. [Teoriya elektroprivoda]. Energoatomizdat, Moscow (1985)
Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)
Chen, T., Ljung, L.: Regularized system identification using orthonormal basis functions. In: European Control Conference, ECC 2015, pp. 1291–1296 (2015). https://doi.org/10.1109/ECC.2015.7330716
Bessonov, A.A., Zagashvili, Y., Markelov, A.S.: Methods and Means of Identification of Dynamic Objects. Energoatomizdat, Leningrad (1989)
Tiels, K., Schoukens, J.: Wiener system identification with generalized orthonormal basis functions. Automatica 50(12), 3147–3154 (2014). https://doi.org/10.1016/j.automatica.2014.10.010
Bouzrara, K., Garna, T., Ragot, J., Messaoud, H.: Online identification of the ARX model expansion on Laguerre orthonormal bases with filters on model input and out-put. Int. J. Control 86(3), 369–385 (2013). https://doi.org/10.1080/00207179.2012.732710
Karsky, V.: An Improved method for parametrising generalized Laguerre functions to compute the inverse Laplace transform of fractional order transfer functions. In: AIP Conference Proceedings, vol. 2293 (2020). https://doi.org/10.1063/5.0026713
Suetin, P.K.: Classical Orthogonal Polynomials. Nauka, Moscow (1979)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Petrov, V. (2021). Modeling and Identification of Electromechanical Systems Using Orthonormal Jacobi Functions. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-86653-2_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86652-5
Online ISBN: 978-3-030-86653-2
eBook Packages: Computer ScienceComputer Science (R0)