Skip to main content

An Algorithm for Polytope Overlapping Detection

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12949))

Included in the following conference series:

  • 1137 Accesses

Abstract

The intersection of polytopes is a basic problem of computational geometry with many engineering applications. Intersections of simplices or parallelotopes have been widely used in finite element grid generations. This paper is devoted to an algorithm for detecting overlapping polytopes. We present a new iterative algorithm, which is independent of the dimension of the Euclidean space. The main idea is triangulating the tested polytopes by simplicial finite elements and then investigating couples of potential simplices for an intersection. For that purpose, a method for overlapping detection of arbitrary simplices in \(\mathbf{R}^n\) is developed. A detailed description of the pseudocode of the original algorithm is presented. The advantages of the proposed method are demonstrated in the twelve-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharoni, R., Berger, E.: The intersection of a matroid and a simplicial complex. Trans. Amer. Math. Soc. 358(11), 4895–4917 (2006)

    Article  MathSciNet  Google Scholar 

  2. Bastrakov, S.I., Churkin, A.V., Yu, N.: Zolotykh, Accelerating Fourier-Motzkin elimination using bit pattern trees Optimization Methods & Software 2020–01-14. https://doi.org/10.1080/10556788.2020.1712600

  3. Bauschke, H.H., Combettes, P.L.: Fejér monotonicity and fixed point iterations. In: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics (Ouvrages de mathématiques de la SMC). Springer, New York (2011)

    Google Scholar 

  4. Bey, J.: Simplicial grid refinement, on Freudenthal’s algorithm and the optimal number of congruence classes. Numer. Math. 85(1), 1–29 (1998)

    Article  MathSciNet  Google Scholar 

  5. Brandts, J., Korotov, S., Křížek, M.: Simplicial finite elements in higher dimensions. Appl. Math. 52(3), 251–265 (2007)

    Article  MathSciNet  Google Scholar 

  6. Cignonit, P., Montanit, C., Scopigno, R.: DeWall: a fast divide and conquer Delaunay triangulation algorithm in \(E^d\). Comput. Aided Des. 30(5), 333–341 (1998)

    Article  Google Scholar 

  7. Descantes, Y., Tricoire, F., Richard, P.: Classical contact detection algorithms for 3D DEM simulations: drawbacks and solutions. Comput. Geotech. 114, 103134 (2019)

    Google Scholar 

  8. David, A., Edwards, K., Ondřej, F.K., Spurný, J.: A note on intersections of simplices. Bull. Soc. Math. France 139.1, 89–95 (2011)

    Google Scholar 

  9. Haddock, J., Needell, D.: On Motzkin’s method for inconsistent linear systems. Bit Numer. Math. 59, 387–401 (2019)

    Article  MathSciNet  Google Scholar 

  10. Jing, R.-J., Maza, M.M., Talaashrafi, D.: Complexity estimates for Fourier-Motzkin elimination. CoRR, abs/1811.01510 (2018)

    Google Scholar 

  11. Keßler, C.W.: Parallel fourier-motzkin elimination. In: Bougé, L., Fraigniaud, P., Mignotte, A., Robert, Y. (eds.) Euro-Par 1996. LNCS, vol. 1124, pp. 66–71. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0024686

    Chapter  Google Scholar 

  12. Lee, J.H., Amit, J., Eva, M.: Sevick-Muraca Fast intersections on nested tetrahedrons (FINT): an algorithm for adaptive finite element based distributed parameter estimation. J. Comput. Phys. 227(11), 5778–5798 (2008)

    Google Scholar 

  13. Lei, Y.: The inexact fixed matrix iteration for solving large linear inequalities in a least squares sense. Numer. Algorithms 69(1), 227–251 (2015)

    Article  MathSciNet  Google Scholar 

  14. Khachiyan, L.: Fourier-motzkin elimination method. In: Christodoulos, A.F., Panos, M.P. (eds) Encyclopedia of Optimization. Second Edition, pp. 1074–1077. Springer (2009)

    Google Scholar 

  15. Lira, W.M.: Luiz cristovao gomes coelho. In: Multiple Intersections of Finite-Element Surface Meshes. IMR, pp. 355–363. Luiz Fernando Martha (2002)

    Google Scholar 

  16. Mandel, J.: Convergence of the cyclical relaxation method for linear inequalities. Math. Programm. 30, 218–228 (1984)

    Article  MathSciNet  Google Scholar 

  17. Montanari, M., Petrinic, N., Barbieri, E.: Improving the GJK algorithm for faster and more reliable distance queries between convex objects. ACM Trans. Graph. 36(3), 30:1–30:17 (2017)

    Google Scholar 

  18. Petrov, M.S., Todorov, T.D.: Properties of the multidimensional finite elements. Appl. Math. Comput. 391, 125695 (2021)

    Google Scholar 

  19. Petrov, M.S., Todorov, T.D.: Refinement strategies related to cubic tetrahedral meshes. Appl. Numer. Math. 137, 169–183 (2019)

    Article  MathSciNet  Google Scholar 

  20. Petrov, M.S., Todorov, T.D.: Stable subdivision of 4D polytopes. Numer. Algorithms 79(2), 633–656 (2018)

    Article  MathSciNet  Google Scholar 

  21. Pinar, M.Ç.: Newton’s method for linear inequality systems. Eur. J. Oper. Res. 107, 710–719 (1998)

    Article  Google Scholar 

  22. Polyak, B.T.: Gradient methods for solving equations and inequalities. USSR Comput. Math. Math. Phys. 4(6), 17–32 (1964)

    Article  MathSciNet  Google Scholar 

  23. Raydan, M.: On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer. Anal. 13, 321–326 (1993)

    Article  MathSciNet  Google Scholar 

  24. Šimeček, I., Fritsch, R., Langr, D., Lórencz, R.: Parallel solver of large systems of linear inequalities using fourier-motzkin elimination. Comput. Inform. 35, 1307–1337 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Talman, D.: intersection theorems on the unit simplex and the simplotope. In: Gilles, R.P., Ruys, P.H.M. (eds) Imperfections and Behavior in Economic Organizations. Theory and Decision Library (Series C: Game Theory, Mathematical Programming and Operations Research), vol. 11, pp. 257–278. Springer, Dordrecht (1994)

    Google Scholar 

  26. Telgen, J.: On relaxation methods for systems of linear inequalities. Eur. J. Oper. Res. 9(2), 184–189 (1982)

    Article  MathSciNet  Google Scholar 

  27. Yen, N.D.: An introduction to vector variational inequalities and some new results. Acta Math. Vietnam 41, 505–529 (2016)

    Article  MathSciNet  Google Scholar 

  28. Yuan, G., Hu, W.: A conjugate gradient algorithm for large-scale unconstrained optimization problems and nonlinear equations. J. Inequal. Appl. 2018, 113 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petrov, M.S., Todorov, T.D. (2021). An Algorithm for Polytope Overlapping Detection. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics