Abstract
The amount of energy consumed by a building can be estimated by performing dynamic simulations. In this study, two building simulation energy software, EnergyPlus, and TRACE700 were used to assess the energy performance of an existing service building. The building, placed in a specific zone of Portugal, has thirty people and a floor area of 2,000 m2. It consumes mainly electricity, natural gas, and solar energy. The dynamic simulation started with the weather file upload, and then the construction, illumination, interior equipment, and HVAC systems were defined. The results were compared with the actual energy consumption values, and the deviation was 2% in the case of EnergyPlus and 0.5% in the case of TRACE700.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Energia. Comissão Europeia
Economidou, M., Todeschi, V., Bertoldi, P., et al.: Review of 50 years of EU energy efficiency policies for buildings. Energy Build. 225, 110322 (2020). https://doi.org/10.1016/j.enbuild.2020.110322
Sultanguzin, I.A., Kruglikov, D.A., Yatsyuk, T.V., Kalyakin, I.D., Yavorovsky, Y., Govorin, A.V.: Using of BIM, BEM and CFD technologies for design and construction of energy-efficient houses. E3S Web Conf. 124, 03014 (2019). https://doi.org/10.1051/e3sconf/201912403014
Gao, H., Koch, C., Wu, Y.: Building information modelling based building energy modelling: a review. Appl. Energy 238, 320–343 (2019). https://doi.org/10.1016/j.apenergy.2019.01.032
Amani, N., Soroush, A.A.R.: Effective energy consumption parameters in residential buildings using Building Information Modeling. Glob. J. Environ. Sci. Manage. 6, 467–480 (2020). https://doi.org/10.22034/gjesm.2020.04.04
Neymark, J., Judkoff, R.: International energy agency building energy simulation test and diagnostic method. Natl. Renew. Energy Lab. (2008)
Guzmán Garcia, E., Zhu, Z.: Interoperability from building design to building energy modeling. J. Build. Eng. 1, 33–41 (2015). https://doi.org/10.1016/J.JOBE.2015.03.001
Esteves, D., Silva, J., Rodrigues, N., Martins, L., Teixeira, J., Teixeira, S.: Simulation of PMV and PPD thermal comfort using energyplus. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11624, pp. 52–65. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24311-1_4
Noversa, R., Silva, J., Rodrigues, N., Martins, L., Teixeira, J., Teixeira, S.: Thermal simulation of a supermarket cold zone with integrated assessment of human thermal comfort. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12254, pp. 214–227. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58817-5_17
Silva, J., et al.: Energy performance of a service building: comparison between energyplus and revit. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12254, pp. 201–213. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58817-5_16
Lanzisera, S., Dawson-Haggerty, S., Cheung, H.Y.I., et al.: Methods for detailed energy data collection of miscellaneous and electronic loads in a commercial office building. Build. Environ. 65, 170–177 (2013)
Palmero-marrero, A.I., Gomes, F., Sousa, J., Oliveira, A.C.: Energetic analysis of a thermal building using geothermal and solar energy sources. Energy Rep. 6, 201–206 (2020)
Gao, Y., Li, S., Xingang, F., Dong, W., Bing, L., Li, Z.: Energy management and demand response with intelligent learning for multi-thermal-zone buildings. Energy 210, 118411 (2020)
Queiroz, N., Westphal, F.S., Ruttkay Pereira, F.O.: A performance-based design validation study on EnergyPlus for daylighting analysis. Build. Environ. 183, 107088 (2020)
Al-janabi, A., Kavgic, M., Mohammadzadeh, A., Azzouz, A.: Comparison of EnergyPlus and IES to model a complex university building using three scenarios: free-floating, ideal air load system, and detailed. J. Build. Eng. 22, 262–280 (2019)
Chen, Y., Deng, Z., Hong, T.: Automatic and rapid calibration of urban building energy models by learning from energy performance database. Appl. Energy 277, 115584 (2020)
Stevanović, S.: Optimization of passive solar design strategies: a review. Renew. Sustain. Energy Rev. 25, 177–196 (2013). https://doi.org/10.1016/j.rser.2013.04.028
De Boeck, L., Verbeke, S., Audenaert, A., De Mesmaeker, L.: Improving the energy performance of residential buildings: a literature review. Renew. Sustain. Energy Rev. 52, 960–975 (2015). https://doi.org/10.1016/J.RSER.2015.07.037
Hashempour, N., Taherkhani, R., Mahdikhani, M.: Energy performance optimization of existing buildings: a literature review. Sustain Cities Soc. 54, 101967 (2020). https://doi.org/10.1016/j.scs.2019.101967
Crawley, D.B., Hand, J.W., Kummert, M., Griffith, B.T.: Contrasting the capabilities of building energy performance simulation programs. Build. Environ. 43, 661–673 (2008). https://doi.org/10.1016/j.buildenv.2006.10.027
Sousa, J.: Energy simulation software for buildings: review and comparison. In: International Workshop on Information Technology for Energy Applicatons-IT4Energy, Lisabon, p. 12 (2012)
Shrivastava, R.L., Kumar, V., Untawale, S.P.: Modeling and simulation of solar water heater: a TRNSYS perspective. Renew. Sustain. Energy Rev. 67, 126–143 (2017). https://doi.org/10.1016/j.rser.2016.09.005
Sadeghifam, A.N., Zahraee, S.M., Meynagh, M.M., Kiani, I.: Combined use of design of experiment and dynamic building simulation in assessment of energy efficiency in tropical residential buildings. Energy Build. 86, 525–533 (2015). https://doi.org/10.1016/j.enbuild.2014.10.052
Acknowledgments
The authors would like to express their gratitude for the support given by FCT within the R&D Units Project Scope UIDB/00319/2020 (ALGORITMI) and R&D Units Project Scope UIDP/04077/2020 (MEtRICs).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Brito, J., Silva, J., Teixeira, J., Teixeira, S. (2021). Energy Performance of a Service Building: Comparison Between EnergyPlus and TRACE700. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-86653-2_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86652-5
Online ISBN: 978-3-030-86653-2
eBook Packages: Computer ScienceComputer Science (R0)