Skip to main content

Machine Learning-Based Numerical Dispersion Mitigation in Seismic Modelling

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

We present an original approach to improving seismic modelling performance by applying deep learning techniques to mitigate numerical error. In seismic modelling, a series of several thousand simulations are required to generate a typical seismic dataset. These simulations are performed for different source positions (equidistantly distributed) at the free surface. Thus, the output wavefields that corresponded to the nearby sources are relatively similar, sharing common peculiarities. Our approach suggests simulating wavefields using finite differences with coarse enough discretization to reduce the computational complexity of seismic modelling. After that, solutions for 1 to 10 percents of source positions are simulated using fine discretizations to obtain the training dataset, which is used to train the deep neural network to remove numerical error (numerical dispersion) from the coarse-grid simulated wavefields. Later the network is applied to the entire dataset. Our experiments illustrate that the suggested algorithm in the 2D case significantly (up to ten times) speeds up seismic modelling.

K. Gadylshin and V. Lisitsa—are grateful to Mathematical Center in Akademgorodok, the agreement with Ministry of Science and High Education of the Russian Federation number 075-15-2019-1613 for the financial support. MN is supported by the Agency of the Precedent of Russian Federation, grant no. MK-3947.2021.1.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldassari, C., Barucq, H., Calandra, H., Diaz, J.: Numerical performances of a hybrid local-time stepping strategy applied to the reverse time migration. Geophys. Prospect. 59(5), 907–919 (2011). https://doi.org/10.1111/j.1365-2478.2011.00975.x

    Article  Google Scholar 

  2. Chen, G., Song, L., Liu, L.: 3D numerical simulation of elastic wave propagation in discrete fracture network rocks. Pure Appl. Geophys. 176(12), 5377–5390 (2019)

    Article  Google Scholar 

  3. Cohen, G. (ed.): Metodes numeriques d’ordre eleve pour les ondes en regime transitoire. INRIA (1994). in French

    Google Scholar 

  4. Collino, F., Tsogka, C.: Application of the perfectly matched layer absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics 66, 294–307 (2001)

    Article  Google Scholar 

  5. Gadylshin, K., Silvestrov, I., Bakulin, A.: Inpainting of local wavefront attributes using artificial intelligence for enhancement of massive 3-D prestack seismic data. Geophys. J. Int. 223, 1888–1898 (2020)

    Article  Google Scholar 

  6. Guo, X., Li, W., Iorio, F.: Convolutional neural networks for steady flow approximation. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16, San Francisco, CA, USA, pp. 481–490 (2016). https://doi.org/10.1145/2939672.2939738

  7. Hicks, G.: Arbitrary source and receiver positioning in finite-difference schemes using kaiser windowed sinc functions. Geophysics 67(1), 156–165 (2002)

    Article  Google Scholar 

  8. Kaser, M., Dumbser, M.: An arbitrary high-order discontinuous galerkin method for elastic waves on unstructured meshes - i. the two-dimensional isotropic case with external source terms. Geophys. J. Int. 166(2), 855–877 (2006)

    Google Scholar 

  9. Koene, E., Robertsson, J.: Removing numerical dispersion artifacts from reverse time migration and full-waveform inversion, pp. 4143–4147 (2017)

    Google Scholar 

  10. Kragh, E., Christie, P.: Seismic repeatability, normalized rms, and predictability. Lead. Edge 21(7), 640–647 (2002)

    Article  Google Scholar 

  11. Levander, A.R.: Fourth-order finite-difference p-sv seismograms. Geophysics 53(11), 1425–1436 (1988)

    Article  Google Scholar 

  12. Lisitsa, V., Kolyukhin, D., Tcheverda, V.: Statistical analysis of free-surface variability’s impact on seismic wavefield. Soil Dyn. Earthq. Eng. 116, 86–95 (2019)

    Article  Google Scholar 

  13. Lisitsa, V., Tcheverda, V., Botter, C.: Combination of the discontinuous galerkin method with finite differences for simulation of seismic wave propagation. J. Comput. Phys. 311, 142–157 (2016)

    Article  MathSciNet  Google Scholar 

  14. Liu, Y.: Optimal staggered-grid finite-difference schemes based on least-squares for wave equation modelling. Geophys. J. Int. 197(2), 1033–1047 (2014)

    Article  Google Scholar 

  15. Martin, G.S., Wiley, R., Marfurt, K.J.: Marmousi2: an elastic upgrade for marmousi. Lead. Edge 25(2), 156–166 (2006)

    Article  Google Scholar 

  16. Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R.J., Halada, L.: 3D heterogeneous staggered-grid finite-differece modeling of seismic motion with volume harmonic and arithmetic averagigng of elastic moduli and densities. Bull. Seismol. Soc. Am. 92(8), 3042–3066 (2002)

    Article  Google Scholar 

  17. Moseley, B., Nissen-Meyer, T., Markham, A.: Deep learning for fast simulation of seismic waves in complex media. Solid Earth 11, 1527–1549 (2020)

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, Al.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Shokin, Y., Yanenko, N.: Method of Differential Approximation. Application to Gas Dynamics. Nauka, Novosibirsk (1985). in Russian

    Google Scholar 

  20. Virieux, J.: P-sv wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51(4), 889–901 (1986)

    Article  Google Scholar 

  21. Virieux, J., Calandra, H., Plessix, R.E.: A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging. Geophys. Prospect. 59(5), 794–813 (2011). https://doi.org/10.1111/j.1365-2478.2011.00967.x

    Article  Google Scholar 

  22. Vishnevsky, D., Lisitsa, V., Tcheverda, V., Reshetova, G.: Numerical study of the interface errors of finite-difference simulations of seismic waves. Geophysics 79(4), T219–T232 (2014)

    Article  Google Scholar 

  23. Xu, Z., et al.: Time-dispersion filter for finite-difference modeling and reverse time migration, pp. 4448–4452 (2017)

    Google Scholar 

  24. Zhu, J., Ren, M., Liao, Z.: Wave propagation and diffraction through non-persistent rock joints: an analytical and numerical study. Int. J. Rock Mech. Mining Sci. 132, 104362 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Lisitsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gadylshin, K., Lisitsa, V., Gadylshina, K., Vishnevsky, D., Novikov, M. (2021). Machine Learning-Based Numerical Dispersion Mitigation in Seismic Modelling. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics