Skip to main content

An Improved Accuracy Split-Step Padé Parabolic Equation for Tropospheric Radio-Wave Propagation

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12949))

Included in the following conference series:

Abstract

This paper is devoted to modeling the tropospheric electromagnetic waves propagation over irregular terrain by the higher-order finite-difference methods for the parabolic equation (PE). The proposed approach is based on the Padé rational approximations of the propagation operator, which is applied simultaneously along with longitudinal and transversal coordinates. At the same time, it is still possible to model the inhomogeneous tropospheric refractive index. Discrete dispersion analysis of the proposed scheme is carried out. A comparison with the other finite-difference methods for solving the parabolic equation and the split-step Fourier (SSF) method is given. It is shown that the proposed method allows using a more sparse computational grid than the existing finite-difference methods. This in turn results in more fast computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apaydin, G., Ozgun, O., Kuzuoglu, M., Sevgi, L.: A novel two-way finite-element parabolic equation groundwave propagation tool: tests with canonical structures and calibration. IEEE Trans. Geosci. Remote Sens. 49(8), 2887–2899 (2011)

    Article  Google Scholar 

  2. Baker, G.A., Graves-Morris, P.: Pade Approximants, vol. 59. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  3. Brookner, E., Cornely, P.R., Lok, Y.F.: AREPS and TEMPER-getting familiar with these powerful propagation software tools. In: IEEE Radar Conference, pp. 1034–1043. IEEE (2007)

    Google Scholar 

  4. Cama-Pinto, D., et al.: Empirical model of radio wave propagation in the presence of vegetation inside greenhouses using regularized regressions. Sensors 20(22), 6621 (2020)

    Article  Google Scholar 

  5. Collins, M.D.: A split-step pade solution for the parabolic equation method. J. Acoust. Soc. Am. 93(4), 1736–1742 (1993)

    Article  Google Scholar 

  6. Collins, M.D., Siegmann, W.L.: Parabolic Wave Equations with Applications. Springer, New York (2019). https://doi.org/10.1007/978-1-4939-9934-7

    Book  MATH  Google Scholar 

  7. Ehrhardt, M., Zisowsky, A.: Discrete non-local boundary conditions for split-step padé approximations of the one-way Helmholtz equation. J. Comput. Appl. Math. 200(2), 471–490 (2007)

    Article  MathSciNet  Google Scholar 

  8. Fishman, L., McCoy, J.J.: Derivation and application of extended parabolic wave theories. I. The factorized Helmholtz equation. J. Math. Phys. 25(2), 285–296 (1984)

    Article  MathSciNet  Google Scholar 

  9. Guo, Q., Long, Y.: Two-way parabolic equation method for radio propagation over rough sea surface. IEEE Trans. Antennas Propag. 68, 4839–4847 (2020)

    Article  Google Scholar 

  10. Guo, Q., Zhou, C., Long, Y.: Greene approximation wide-angle parabolic equation for radio propagation. IEEE Trans. Antennas Propag. 65(11), 6048–6056 (2017)

    Article  Google Scholar 

  11. Kuttler, J.R., Janaswamy, R.: Improved Fourier transform methods for solving the parabolic wave equation. Radio Sci. 37(2), 1–11 (2002)

    Article  Google Scholar 

  12. Lee, D., Schultz, M.H.: Numerical Ocean Acoustic Propagation in Three Dimensions. World Scientific, Singapore (1995)

    Book  Google Scholar 

  13. Leontovich, M.A., Fock, V.A.: Solution of the problem of propagation of electromagnetic waves along the earth’s surface by the method of parabolic equation. J. Phys. USSR 10(1), 13–23 (1946)

    MathSciNet  MATH  Google Scholar 

  14. Levy, M.F.: Parabolic Equation Methods for Electromagnetic Wave Propagation. The Institution of Electrical Engineers, UK (2000)

    Book  Google Scholar 

  15. Lytaev, M.S.: Python wave prorogation library (2020). https://github.com/mikelytaev/wave-propagation

  16. Lytaev, M., Borisov, E., Vladyko, A.: V2I propagation loss predictions in simplified urban environment: a two-way parabolic equation approach. Electronics 9(12), 2011 (2020)

    Article  Google Scholar 

  17. Lytaev, M.S.: Automated selection of the computational parameters for the higher-order parabolic equation numerical methods. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12249, pp. 296–311. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58799-4_22

    Chapter  Google Scholar 

  18. Lytaev, M.S.: Numerov-pade scheme for the one-way Helmholtz equation in tropospheric radio-wave propagation. IEEE Antennas Wirel. Propag. Lett. 19(12), 2167–2171 (2020)

    Article  Google Scholar 

  19. Lytaev, M.S.: Nonlocal boundary conditions for split-step padé approximations of the Helmholtz equation with modified refractive index. IEEE Antennas Wirel. Propag. Lett. 17(8), 1561–1565 (2018)

    Article  Google Scholar 

  20. Mills, M.J., Collins, M.D., Lingevitch, J.F.: Two-way parabolic equation techniques for diffraction and scattering problems. Wave Motion 31(2), 173–180 (2000)

    Article  Google Scholar 

  21. Nguyen, V.D., Phan, H., Mansour, A., Coatanhay, A., Marsault, T.: On the proof of recursive Vogler algorithm for multiple knife-edge diffraction. IEEE Trans. Antennas Propag. 69(6), 3617–3622 (2020)

    Article  Google Scholar 

  22. Ozgun, O., et al.: PETOOL v2.0: parabolic equation toolbox with evaporation duct models and real environment data. Comput. Phys. Commun. 256, 107454 (2020)

    Article  MathSciNet  Google Scholar 

  23. Permyakov, V.A., Mikhailov, M.S., Malevich, E.S.: Analysis of propagation of electromagnetic waves in difficult conditions by the parabolic equation method. IEEE Trans. Antennas Propag. 67(4), 2167–2175 (2019)

    Article  Google Scholar 

  24. Ramos, G.L., Pereira, P.T., Leonor, N., Caldeirinha, F.R.: Analysis of radiowave propagation in forest media using the parabolic equation. In: 2020 14th European Conference on Antennas and Propagation (EuCAP). IEEE (2020)

    Google Scholar 

  25. Samarskii, A.A., Mikhailov, A.P.: Principles of Mathematical Modelling: Ideas, Methods, Examples. Taylor and Francis, Routledge (2002)

    MATH  Google Scholar 

  26. Taylor, M.: Pseudodifferential Operators and Nonlinear PDE, vol. 100. Springer, Cham (2012). https://doi.org/10.1007/978-1-4612-0431-2

  27. Vavilov, S.A., Lytaev, M.S.: Modeling equation for multiple knife-edge diffraction. IEEE Trans. Antennas Propag. 68(5), 3869–3877 (2020)

    Article  Google Scholar 

  28. Wang, D.D., Pu, Y.R., Xi, X.L., Zhou, L.L.: An analysis of narrow-angle and wide-angle shift-map parabolic equations. IEEE Trans. Antennas Propag. 68(5), 3911–3918 (2020)

    Article  Google Scholar 

  29. Zhang, P., Bai, L., Wu, Z., Guo, L.: Applying the parabolic equation to tropospheric groundwave propagation: a review of recent achievements and significant milestones. IEEE Antennas Propag. Mag 58(3), 31–44 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Science Foundation grant No. 21-71-00039.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lytaev, M.S. (2021). An Improved Accuracy Split-Step Padé Parabolic Equation for Tropospheric Radio-Wave Propagation. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics