Skip to main content

Record-to-Record Travel Algorithm for Biomolecules Structure Prediction

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

The biomolecules structure prediction problem (BSP) - especially the protein structure prediction (PSP) and the nucleic acids structure prediction - was introduced in the computational biology field approximately 45–50 years ago. The PSP on hydrophobic-polar lattice model (HP model) is a combinatorial optimisation problem, and consists in aims to minimize an arbitrary energy function associated with every native structure.

To solve the PSP problem, many metaheuristic methods were applied. Although the record-to-record travel algorithm (RRT) has proven useful in solving combinatorial optimisation problems, it has not been applied so far to solve the PSP problem.

In this paper, a mathematical modeling for PSP on the 2D HP rectangular lattice is developed and an adapted record-to-record travel algorithm (aRRT) is applied to address the combinatorial optimisation problem. For candidate solutions perturbation, a rotation and a diagonal move mutation operators were used.

A benchmark data set is used to test the RRT algorithm. The results obtained show that the algorithm is competitive when compared to the best published results. The main advantage of the RRT algorithm is that it is time-efficient, and requires small computational resources to obtain the same results as swarm intelligence algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181(4096), 223–230 (1973)

    Article  Google Scholar 

  2. Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (HP) model is np-complete. J. Comput. Biol. 5(1), 27–40 (1998). https://doi.org/10.1089/cmb.1998.5.27, https://doi.org/10.1089/cmb.1998.5.27, pMID: 9541869

  3. Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., Yannakakis, M.: On the complexity of protein folding. J. Comput. Biol. 5(3), 423–465 (1998). https://doi.org/10.1089/cmb.1998.5.423, pMID: 9773342

  4. Dill, K.A.: Theory for the folding and stability of globular proteins. Biochemistry 24, 1501 (1985)

    Article  Google Scholar 

  5. Dinu, V., Trutia, E., Popa-Cristea, E., Popescu, A.: Biochimie medicală - mic tratat. Ed. Medicală, Bucureşti (2006)

    Google Scholar 

  6. Dueck, G.: New optimization heuristics: the great deluge algorithm and the record-to-record travel. J. Comput. Phys. 104(1), 86–92 (1993). https://doi.org/10.1006/jcph.1993.1010, http://www.sciencedirect.com/science/article/pii/S0021999183710107

  7. Dueck, G., Scheuer, T.: Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J. Comput. Phys. 90(1), 161–175 (1990). https://doi.org/10.1016/0021-9991(90)90201-B, http://www.sciencedirect.com/science/article/pii/002199919090201B

  8. Garett, R.H., Grisham, C.M.: Biochemistry. Emily Barrosse, John J. Vondeling, 2nd edn. (1999)

    Google Scholar 

  9. Harrison, P.M., Chan, H.S., Prusiner, S.B., Cohen, F.E.: Thermodynamics of model prions and its implications for the problem of prion protein folding 11edited by a. r. fersht. J. Mol. Biol. 286(2), 593–606 (1999). https://doi.org/10.1006/jmbi.1998.2497, http://www.sciencedirect.com/science/article/pii/S0022283698924974

  10. Huang, C., Yang, X., He, Z.: Protein folding simulations of 2D HP model by the genetic algorithm based on optimal secondary structures. Comput. Biol. Chem. 34(3), 137–142 (2010). https://doi.org/10.1016/j.compbiolchem.2010.04.002, http://www.sciencedirect.com/science/article/pii/S147692711000040X

  11. Lau, K.F., Dill, K.A.: A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22(10), 3986–3997 (1989). https://doi.org/10.1021/ma00200a030

    Article  Google Scholar 

  12. Liang, F., Hung Wong, W.: Evolutionary Monte Carlo for protein folding simulations. J. Chem. Phys. 115, 3374–3380 (2001). https://doi.org/10.1063/1.1387478

    Article  Google Scholar 

  13. Mafarja, M., Abdullah, S.: A fuzzy record-to-record travel algorithm for solving rough set attribute reduction. Int. J. Syst. Sci. 46, 1–10 (2015). https://doi.org/10.1080/00207721.2013.791000

    Article  MATH  Google Scholar 

  14. Mafarja, M.M., Abdullah, S.: Record-to-record travel algorithm for attribute reduction in rough set theory. J. Theor. Appl. Inf. Technol. 49, 507–513 (2013)

    MATH  Google Scholar 

  15. Mann, M., Backofen, R.: Exact methods for lattice protein models. Bio-Algorithms Med-Syst. 10(4), 213–225 (2014). https://doi.org/10.1515/bams-2014-0014, https://www.degruyter.com/view/journals/bams/10/4/article-p213.xml

  16. Mansour, N., Kanj, F., Khachfe, H.: Particle swarm optimization approach for protein structure prediction in the 3D HP model. Interdiscip. Sci.: Comput. Life Sci. 4(3), 190–200 (2012). https://doi.org/10.1007/s12539-012-0131-z

    Article  Google Scholar 

  17. Neumaier, A.: Molecular modeling of proteins and mathematical prediction of protein structure. SIAM Rev. 39(3), 407–460 (1997). https://doi.org/10.1137/S0036144594278060

    Article  MathSciNet  MATH  Google Scholar 

  18. Rashid, M.A., Khatib, F., Hoque, M.T., Sattar, A.: An enhanced genetic algorithm for ab initio protein structure prediction. IEEE Trans. Evol. Comput. 20(4), 627–644 (2016)

    Article  Google Scholar 

  19. Schittekat, P.: Deconstructing record-to-record travel for the capacitated vehicle routing problem. Oper. Res. Manag. Sci. Lett. 1, 17–27 (2018)

    Google Scholar 

  20. Shmygelska, A., Hoos, H.H.: An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinform. 6(1), 30 (2005). https://doi.org/10.1186/1471-2105-6-30

    Article  Google Scholar 

  21. Sima, I., Parv, B.: Protein folding simulation using combinatorial whale optimization algorithm. In: 2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 159–166 (2019)

    Google Scholar 

  22. Splettstoesser, T.: “\({\copyright }\) [Thomas Splettstoesser]/ Adobe Stock” Behance. Protein Folding Funnel. https://www.behance.net/gallery/10952399/Protein-Folding-Funnel. Accessed 02 Mar 2021

  23. Turabieh, H.: A hybrid genetic algorithm for 2D protein folding simulations. Int. J. Comput. Appl. 139, 38–43 (2016). https://doi.org/10.5120/ijca2016909127

    Article  Google Scholar 

  24. Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. J. Mol. Biol. 231(1), 75–81 (1993). https://doi.org/10.1006/jmbi.1993.1258, http://www.sciencedirect.com/science/article/pii/S0022283683712581

  25. Yang, C.H., Wu, K.C., Lin, Y.S., Chuang, L.Y., Chang, H.W.: Protein folding prediction in the HP model using ions motion optimization with a greedy algorithm. BioData Min. 11(1), 17 (2018). https://doi.org/10.1186/s13040-018-0176-6

    Article  Google Scholar 

  26. Zhou, C., Hou, C., Zhang, Q., Wei, X.: Enhanced hybrid search algorithm for protein structure prediction using the 3D-HP lattice model. J. Mol. Model. 19(9), 3883–3891 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Prof. Univ. Dr. Bazil Parv for his professional guidance and valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Sima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sima, I., Cristea, DM. (2021). Record-to-Record Travel Algorithm for Biomolecules Structure Prediction. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics