Skip to main content

Another Dubious Way to Compute the Exponential of a Matrix

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12949))

Included in the following conference series:

Abstract

In this paper we analyzed recent works on inverting Vandermonde matrix, both classical and generalized, which were unknown during the publication of Moler’s and Van Loan’s paper ‘Nineteen Dubious Ways to Compute the Exponential of a Matrix’. Upon that analysis we proposed the Vandermonde method as the fourth candidate for calculating exponent of generic matrices. On this basis we also proposed the Vandermonde based method to compute the exponential of certain class of special matrices, i.e. the companion matrices.

This work was supported by Statutory Research funds of Department of Applied Informatics, Silesian University of Technology, Gliwice, Poland (02/100/BK_21/0008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In mathematical literature in some languages instead is used the term ‘Frobenius’. But in the English Literature the class of Frobenius matrices is more general, encompassing the companion matrices as its special case.

  2. 2.

    Any function we call symmetric, if and only if after any arbitrary permutation of its independent variables we receive the same polynomial ([23] pp. 77–84).

  3. 3.

    The problem is neatly defined in the very title of the classical in the structured matrices field monograph [35].

  4. 4.

    The trait of generality is - surprisingly - not a standard for the algorithms available in the literature. For example the classical in the associated problem of solving the Vandermonde linear systems article [33] only sketches algorithm for a very peculiar version of the confluence, i.e. with allowed multiplicity equal to only of the first eigenvalue, with all the rest single. The same work [33] suggests that the general case cannot be easily treated, stating in the second paragraph of the page 900: “(can be treated easily)… with only the two endpoints of confluency greater than one, or that with all points of the same order of confluency.”. Significantly, all of the four Pascal-like codes in the appendix of [33] copes only with a classical Vandermonde linear systems, with single eigenvalues (pp. 901–902).

    Obviously algorithms with such an artificial restrictions are worthless in the view of computing the exponential of a matrix.

  5. 5.

    Higher dimensions `can be multiplied by the \(3 \times 3\) algorithm by recursion.

References

  1. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)

    Article  MathSciNet  Google Scholar 

  2. Klamka, J.: Controllability of Dynamical Systems. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  3. Respondek, J.: Approximate controllability of infinite dimensional systems of the n-th order. Int. J. Appl. Math. Comput. Sci. 18(2), 199–212 (2008)

    Article  MathSciNet  Google Scholar 

  4. Respondek, J.: On the confluent Vandermonde matrix calculation algorithm. Appl. Math. Lett. 24, 103–106 (2011)

    Article  MathSciNet  Google Scholar 

  5. Timoshenko, S.: Vibration Problems in Engineering, 3rd edn. D. Van Nostrand Company, London (1955)

    MATH  Google Scholar 

  6. El-Sayed, S.M., Kaya, D.: An application of the ADM to seven order Sawada-Kotara equations. Appl. Math. Comput. 157, 93–101 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Kincaid, D.R., Cheney, E.W.: Numerical Analysis: Mathematics of Scientific Computing, 3rd edn. Brooks Cole, California (2001)

    MATH  Google Scholar 

  8. Spitzbart, A.: A generalization of Hermite’s interpolation formula. Am. Math. Mon. 67(1), 42–46 (1960)

    Article  MathSciNet  Google Scholar 

  9. Lee, K., O’Sullivan, M.E.: Algebraic soft-decision decoding of Hermitian codes. IEEE Trans. Inf. Theory 56(6), 2587–2600 (2010)

    Article  MathSciNet  Google Scholar 

  10. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. SIAM J. Soc. Ind. Appl. Math. 8(2), 300–304 (1960)

    Article  MathSciNet  Google Scholar 

  11. Gorecki, H: On switching instants in minimum time control problem. One dimensional case n-tuple eigenvalue. Bull. de L’Acad. Pol. Des. Sci. 16, 23–30 (1968)

    Google Scholar 

  12. Bini, D.: Relations between exact and approximate bilinear algorithms. Applications. Calcolo 17, 87–97 (1980)

    Article  MathSciNet  Google Scholar 

  13. Bini, D., Capovani, M., Lotti, G., Romani, F.: O(n2.7799) complexity for approximate matrix multiplication. Inform. Process. Lett. 8(5), 234–235 (1979)

    Google Scholar 

  14. Schönhage, A.: Partial and total matrix multiplication. SIAM J. Comput. 10(3), 434–455 (1981)

    Article  MathSciNet  Google Scholar 

  15. Eisinberg, A., Fedele, G.: On the inversion of the Vandermonde matrix. Appl. Math. Comput. 174, 1384–1397 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Yan, S., Yang, A.: Explicit algorithm to the inverse of Vandermonde matrix. In: International Conference on Test and Measurements, pp. 176–179 (2009)

    Google Scholar 

  17. El-Mikkawy, M.E.A.: Inversion of a generalized Vandermonde matrix. Int. J. Comput. Math. 80, 759–765 (2003)

    Article  MathSciNet  Google Scholar 

  18. Hou, S., Hou, E.: Recursive computation of inverses of confluent Vandermonde matrices. Electron. J. Math. Technol. 1, 12–26 (2007)

    MATH  Google Scholar 

  19. Respondek, J.: Numerical recipes for the high efficient inverse of the confluent Vandermonde matrices. Appl. Math. Comput. 218, 2044–2054 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Gorecki, H.: Optimization of the Dynamical Systems. PWN, Warsaw (1993)

    Google Scholar 

  21. Hou, S., Hou, E.S.: A recursive algorithm for triangular factorization of inverse of confluent Vandermonde matrices. In: AIP Conference Proceedings, vol. 1089, no. 277, pp. 277–288 (2009)

    Google Scholar 

  22. Barbeau, E.J.: Polynomials, Problem Books in Mathematics. Springer, Berlin (1989). https://www.springer.com/gp/book/9780387406275. ISBN 978-0-387-40627-5. Series ISSN 0941-3502

  23. Prasolov, V.: Polynomials, Algorithms and Computation in Mathematics. Springer, Berlin (2004). https://doi.org/10.1007/978-3-642-03980-5

  24. Pan, V.Ya: Strassen’s algorithm is not optimal - trilinear technique of aggregating uniting and cancelling for constructing fast algorithms for matrix operations. In: Proceedings of 19th Annual Symposium on Foundations of Computer Science, Ann Arbor, Mich (1978)

    Google Scholar 

  25. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990)

    Article  MathSciNet  Google Scholar 

  26. Williams, V.V.: Multiplying matrices in O(n2.373) time. Tech. rep. Stanford University (2014)

    Google Scholar 

  27. Vidyasagar, M.: A novel method of evaluating eAt in closed form. IEEE Trans. Automatic Contr. AC 15, 600–601 (1970)

    Article  Google Scholar 

  28. Luther, U., Rost, K.: Matrix exponentials and inversion of confluent Vandermonde matrices. Electron. Trans. Numer. Anal. 18, 91–100 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Tou, J.T.: Determination of the inverse Vandermonde matrix. IEEE Trans. Autom. Contr. AC 9, 314 (1964)

    Article  Google Scholar 

  30. Wu, S.H.: On the inverse of Vandermonde matrix. IEEE Trans. Autom. Contr. AC 11, 769 (1966)

    Article  Google Scholar 

  31. Cormen, T.H., Leiserson, Ch.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press (2009)

    Google Scholar 

  32. Zhong, X., Zhaoyong, Y.: A fast algorithm for inversion of confluent Vandermonde-like matrices involving polynomials that satisfy a three-term recurrence relation. SIAM J. Matrix Anal. Appl. 19(3), 797–806 (1998)

    Article  MathSciNet  Google Scholar 

  33. Bjorck, A., Pereyra, V.: Solution of Vandermonde systems of equations. Math. Comp. 24(112), 893–903 (1970)

    Article  MathSciNet  Google Scholar 

  34. Higham, N.J.: Functions of Matrices. Theory and Computation, SIAM, Philadelphia (2008)

    Book  Google Scholar 

  35. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  36. Higham, N.J.: Error analysis of the Bjorck-Pereyra algorithms for solving Vandermonde systems. Numer. Math. 50(5), 613–632 (1987)

    Article  MathSciNet  Google Scholar 

  37. Romani, F.: Complexity measures for matrix multiplication algorithms. Calcolo 17, 77–86 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Respondek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Respondek, J. (2021). Another Dubious Way to Compute the Exponential of a Matrix. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics