Skip to main content

Building Energy Performance: Comparison Between EnergyPlus and Other Certified Tools

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Currently, the energy consumption study in buildings is critical in fulfilling the EU objectives to achieve carbon neutrality. There are several building energy simulation tools and other spreadsheets available on the market. One of the main software tools, the EnergyPlus software, and two Excel spreadsheets developed in Portugal to assess the thermal loads and annual energy consumption in commercial and service buildings are used and compared in this work. A simple 3D building was modeled using SketchUp2017, and the schedules, materials, and thermal loads were defined for a typical residential and service building to perform this analysis.

Concerning the thermal loads, the simulation of a building without insulation using EnergyPlus showed results for heating and cooling, respectively 10% lower and 6% higher when compared with those predicted by RECS with the transient spreadsheet. Comparing with the simplified spreadsheet for the REH, the discrepancy is more significant. These discrepancies occur because RECS and REH use a simple methodology compared with EnergyPlus. The results for heating and cooling in EnergyPlus when a building has insulation show that the heating and cooling demand is 46% lower and 25% higher compared with the results with RECS, respectively. These results show that insulation reduces the heating demand although it impairs the cooling demand when compared with the building without insulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. EU Commission, Energy-European Commision 2021. https://ec.europa.eu/info/index_pt. Accessed 26 Mar 2021

  2. Pérez-Lombard, L., Ortiz, J., Pout, C.: A review on buildings energy consumption information. Energy Build. 40(3), 394–398 (2008)

    Article  Google Scholar 

  3. EU Commission, Energy performance of buildings directive 2021. https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en. Accessed 16 Jun 2021

  4. Economidou, M., et al.: Review of 50 years of EU energy efficiency policies for buildings. Energy Build. 225, 110322 (2020)

    Article  Google Scholar 

  5. Hashempour, N., Taherkhani, R., Mahdikhani, M.: Energy performance optimization of existing buildings: a literature review. Sustain. Cities Soc. 54, 101967 (2020)

    Article  Google Scholar 

  6. De Boeck, L., Verbeke, S., Audenaert, A., De Mesmaeker, L.: Improving the energy performance of residential buildings: a literature review. Renew. Sustain. Energy Rev. 52, 960–975 (2015)

    Article  Google Scholar 

  7. Ahern, C., Norton, B.: Energy performance certification: misassessment due to assuming default heat losses. Energy Build. 224, 110229 (2020)

    Article  Google Scholar 

  8. Verichev, K., Zamorano, M., Carpio, M.: Assessing the applicability of various climatic zoning methods for building construction: case study from the extreme southern part of Chile. Build. Environ. 160, 106165 (2019)

    Article  Google Scholar 

  9. Gonzalez-Caceres, A., Lassen, A.K., Nielsen, T.R.: Barriers and challenges of the recommendation list of measures under the EPBD scheme: a critical review. Energy Build. 223, 110065 (2020)

    Article  Google Scholar 

  10. Sanhudo, L., et al.: BIM framework for the specification of information requirements in energy-related projects, Eng. Constr. Archit. Manag. (2020)

    Google Scholar 

  11. Ríos-Fernández, J.C., et al.: Evaluating European directives impacts on residential buildings energy performance: a case study of Spanish detached houses, Clean Technol. Environ. Policy (2021)

    Google Scholar 

  12. Shrivastava, R.L., Vinod, K., Untawale, S.P.: Modeling and simulation of solar water heater: a TRNSYS perspective. Renew. Sustain. Energy Rev. 67, 126–143 (2017)

    Article  Google Scholar 

  13. Sadeghifam, A.N., Zahraee, S.M., Meynagh, M.M., Kiani, I.: Combined use of design of experiment and dynamic building simulation in assessment of energy efficiency in tropical residential buildings. Energy Build. 86, 525–533 (2015)

    Article  Google Scholar 

  14. Silva, J., Brás, J., Noversa, R., Rodrigues, N., Martins, L., Teixeira, J., Teixeira, S.: Energy performance of a service building: comparison between energyplus and revit. In: Gervasi, O. (ed.) Computational Science and Its Applications – ICCSA 2020. LNCS, vol. 12254, pp. 201–213. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58817-5_16

    Chapter  Google Scholar 

  15. Esteves, D., Silva, J., Rodrigues, N., Martins, L., Teixeira, J., Teixeira, S.: Simulation of PMV and PPD thermal comfort using energyplus. In: Misra, S. (ed.) Computational Science and Its Applications – ICCSA 2019. LNCS, vol. 11624, pp. 52–65. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24311-1_4

    Chapter  Google Scholar 

  16. Noversa, R., Silva, J., Rodrigues, N., Martins, L., Teixeira, J., Teixeira, S.: Thermal simulation of a supermarket cold zone with integrated assessment of human thermal comfort. In: Gervasi, O. (ed.) Computational Science and Its Applications – ICCSA 2020. LNCS, vol. 12254, pp. 214–227. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58817-5_17

    Chapter  Google Scholar 

  17. Despacho no 15793-F, Zonamento Climático, Diário da República, 2(234), 26–31 (2013)

    Google Scholar 

  18. Diário da Républica, Decreto-Lei n.o 118/2013, DE 20 DE agosto (desempenho energético dos edifícios), Diário da República, 159, 4988–5005 (2013)

    Google Scholar 

  19. Do Emprego, M.D.E.E.: Portaria n.o 349-D/2013, de 2 de dezembro, Diário da Répuplica, 40, 40–73 (2013)

    Google Scholar 

  20. ISO ISO 13790:2008-Energy performance of buildings. calculation of energy use for space heating and cooling (2016)

    Google Scholar 

  21. Berkeley, L., et al., EnergyPlus Essentials (2019)

    Google Scholar 

  22. Brackney, L., Parker, A., Macumber, D., Benne, K.: Building Energy Modeling with OpenStudio. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77809-9

    Book  Google Scholar 

  23. Berkeley, L., et al.: Engineering Reference (2019)

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude for the support given by FCT within the R&D Units Project Scope UIDB/00319/2020 (ALGORITMI) and R&D Units Project Scope UIDP/04077/2020 (MEtRICs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esteves, D., Silva, J., Martins, L., Teixeira, J., Teixeira, S. (2021). Building Energy Performance: Comparison Between EnergyPlus and Other Certified Tools. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics