Skip to main content

Poisson Solver for Upscaling the Physical Properties of Porous Materials

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

In this paper, we present an iterative solver for Poisson equation. The approach is essentially oriented on upscaling the physical parameters of porous materials, such as electrical resistivity, thermal conductivity, pressure field computation. The algorithm allows solving Poisson equation for strongly heterogeneous media with small-scale high-contrast heterogeneities. The solver is based on the Krylov-type iterative method with a pseudo-spectral preconditionner, thus the convergence rate is independent on the sample size, but sensitive to the contrast of physical properties in the model. GPU-based implementation of the algorithm allows performing simulations for the samples of the size \(400^3\) using a single GPU.

The research was supported by the Russian Science foundation grant no. 21-71-20003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Khulaifi, Y., Lin, Q., Blunt, M., Bijeljic, B.: Pore-scale dissolution by CO2 saturated brine in a multi-mineral carbonate at reservoir conditions: impact of physical and chemical heterogeneity (2019). https://doi.org/10.5285/52b08e7f-9fba-40a1-b0b5-dda9a3c83be2

  2. Al-Khulaifi, Y., Lin, Q., Blunt, M.J., Bijeljic, B.: Pore-scale dissolution by co2 saturated brine in a multimineral carbonate at reservoir conditions: impact of physical and chemical heterogeneity. Water Resour. Res. 55(4), 3171–3193 (2019)

    Article  Google Scholar 

  3. Alpak, F.O., Riviere, B., Frank, F.: A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition. Comput. Geosci. 20(5), 881–908 (2016)

    Article  MathSciNet  Google Scholar 

  4. Andra, H., et al.: Digital rock physics benchmarks - part i: imaging and segmentation. Comput. Geosci. 50, 25–32 (2013)

    Article  Google Scholar 

  5. Andra, H., et al.: Digital rock physics benchmarks - part ii: computing effective properties. Comput. Geosci. 50, 33–43 (2013)

    Article  Google Scholar 

  6. Bazaikin, Y., et al.: Effect of CT image size and resolution on the accuracy of rock property estimates. J. Geophys. Res. Solid Earth 122(5), 3635–3647 (2017)

    Article  Google Scholar 

  7. Belonosov, M., Kostin, V., Neklyudov, D., Tcheverda, V.: 3D numerical simulation of elastic waves with a frequency-domain iterative solver. Geophysics 83(6), T333–T344 (2018)

    Article  Google Scholar 

  8. Brown, D.L., Cortez, R., Minion, M.L.: Accurate projection methods for the incompressible Navier-stokes equations. J. Comput. Phys. 168(2), 464–499 (2001)

    Article  MathSciNet  Google Scholar 

  9. Chandrasekaran, S., Dewilde, P., Gu, M., Somasunderam, N.: On the numerical rank of the off-diagonal blocks of Schur complements of discretized elliptic PDEs. SIAM J. Matrix Anal., 2261–2290 (2010)

    Google Scholar 

  10. Dorn, C., Schneider, M.: Lippmann-Schwinger solvers for the explicit jump discretization for thermal computational homogenization problems. Int. J. Numer. Meth. Eng. 118(11), 631–653 (2019)

    Article  MathSciNet  Google Scholar 

  11. Gerke, K.M., Karsanina, M.V., Katsman, R.: Calculation of Tensorial flow properties on pore level: exploring the influence of boundary conditions on the permeability of three-dimensional stochastic reconstructions. Phys. Rev. E 100(5), 053312 (2019)

    Article  Google Scholar 

  12. Gibou, F., Fedkiw, R., Osher, S.: A review of level-set methods and some recent applications. J. Comput. Phys. 353, 82–109 (2018)

    Article  MathSciNet  Google Scholar 

  13. Haber, E., Ascher, U.M.: Fast finite volume simulation of 3D electromagnetic problems with highly discontinuous coefficients. SIAM J. Sci. Comput. 22(6), 1943–1961 (2001)

    Article  MathSciNet  Google Scholar 

  14. Haber, E., Ascher, U.M., Aruliah, D.A., Oldenburg, D.W.: Fast simulation of 3D electromagnetic problems using potentials. J. Comput. Phys. 163(1), 150–171 (2000)

    Article  Google Scholar 

  15. Hyman, J.D., Winter, C.L.: Stochastic generation of explicit pore structures by thresholding Gaussian random fields. J. Comput. Phys. 277, 16–31 (2014)

    Article  MathSciNet  Google Scholar 

  16. Johansen, H., Colella, P.: A cartesian grid embedded boundary method for Poisson’s equation on irregular domains. J. Comput. Phys. 147(1), 60–85 (1998)

    Article  MathSciNet  Google Scholar 

  17. Kostin, V., Solovyev, S., Bakulin, A., Dmitriev, M.: Direct frequency-domain 3D acoustic solver with intermediate data compression benchmarked against time-domain modeling for full-waveform inversion applications. Geophysics 84(4), T207–T219 (2019)

    Article  Google Scholar 

  18. Lee, B., Min, C.: Optimal preconditioners on solving the Poisson equation with Neumann boundary conditions. J. Comput. Phys. 433, 110189 (2021)

    Article  MathSciNet  Google Scholar 

  19. Lisitsa, V., Podgornova, O., Tcheverda, V.: On the interface error analysis for finite difference wave simulation. Comput. Geosci. 14(4), 769–778 (2010)

    Article  Google Scholar 

  20. Lisitsa, V., Bazaikin, Y., Khachkova, T.: Computational topology-based characterization of pore space changes due to chemical dissolution of rocks. Appl. Math. Model. 88, 21–37 (2020). https://doi.org/10.1016/j.apm.2020.06.037

    Article  MathSciNet  Google Scholar 

  21. Molins, S., et al.: Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments. Environ. Sci. Technol. 48(13), 7453–7460 (2014)

    Article  Google Scholar 

  22. Pleshkevich, A., Vishnevskiy, D., Lisitsa, V.: Sixth-order accurate pseudo-spectral method for solving one-way wave equation. Appl. Math. Comput. 359, 34–51 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003)

    Google Scholar 

  24. Samarskii, A.A.: The Theory of Difference Schemes, Pure and Applied Mathematics, vol. 240. CRC Press (2001)

    Google Scholar 

  25. Stuben, K.: A review of algebraic multigrid. J. Comput. Appl. Math. 128(1–2), 281–309 (2001)

    Article  MathSciNet  Google Scholar 

  26. Vishnevsky, D., Lisitsa, V., Tcheverda, V., Reshetova, G.: Numerical study of the interface errors of finite-difference simulations of seismic waves. Geophysics 79(4), T219–T232 (2014)

    Article  Google Scholar 

  27. Wiegmann, A., Zemitis, A.: EJ-HEAT: a fast explicit jump harmonic averaging solver for the effective heat conductivity of composite materials (2006)

    Google Scholar 

  28. Zhan, X., Schwartz, L.M., Toksöz, M.N., Smith, W.C., Morgan, F.D.: Pore-scale modeling of electrical and fluid transport in Berea sandstone. Geophysics 75(5), F135–F142 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Lisitsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khachkova, T., Lisitsa, V. (2021). Poisson Solver for Upscaling the Physical Properties of Porous Materials. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics