Abstract
In this paper, we present an iterative solver for Poisson equation. The approach is essentially oriented on upscaling the physical parameters of porous materials, such as electrical resistivity, thermal conductivity, pressure field computation. The algorithm allows solving Poisson equation for strongly heterogeneous media with small-scale high-contrast heterogeneities. The solver is based on the Krylov-type iterative method with a pseudo-spectral preconditionner, thus the convergence rate is independent on the sample size, but sensitive to the contrast of physical properties in the model. GPU-based implementation of the algorithm allows performing simulations for the samples of the size \(400^3\) using a single GPU.
The research was supported by the Russian Science foundation grant no. 21-71-20003.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-Khulaifi, Y., Lin, Q., Blunt, M., Bijeljic, B.: Pore-scale dissolution by CO2 saturated brine in a multi-mineral carbonate at reservoir conditions: impact of physical and chemical heterogeneity (2019). https://doi.org/10.5285/52b08e7f-9fba-40a1-b0b5-dda9a3c83be2
Al-Khulaifi, Y., Lin, Q., Blunt, M.J., Bijeljic, B.: Pore-scale dissolution by co2 saturated brine in a multimineral carbonate at reservoir conditions: impact of physical and chemical heterogeneity. Water Resour. Res. 55(4), 3171–3193 (2019)
Alpak, F.O., Riviere, B., Frank, F.: A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition. Comput. Geosci. 20(5), 881–908 (2016)
Andra, H., et al.: Digital rock physics benchmarks - part i: imaging and segmentation. Comput. Geosci. 50, 25–32 (2013)
Andra, H., et al.: Digital rock physics benchmarks - part ii: computing effective properties. Comput. Geosci. 50, 33–43 (2013)
Bazaikin, Y., et al.: Effect of CT image size and resolution on the accuracy of rock property estimates. J. Geophys. Res. Solid Earth 122(5), 3635–3647 (2017)
Belonosov, M., Kostin, V., Neklyudov, D., Tcheverda, V.: 3D numerical simulation of elastic waves with a frequency-domain iterative solver. Geophysics 83(6), T333–T344 (2018)
Brown, D.L., Cortez, R., Minion, M.L.: Accurate projection methods for the incompressible Navier-stokes equations. J. Comput. Phys. 168(2), 464–499 (2001)
Chandrasekaran, S., Dewilde, P., Gu, M., Somasunderam, N.: On the numerical rank of the off-diagonal blocks of Schur complements of discretized elliptic PDEs. SIAM J. Matrix Anal., 2261–2290 (2010)
Dorn, C., Schneider, M.: Lippmann-Schwinger solvers for the explicit jump discretization for thermal computational homogenization problems. Int. J. Numer. Meth. Eng. 118(11), 631–653 (2019)
Gerke, K.M., Karsanina, M.V., Katsman, R.: Calculation of Tensorial flow properties on pore level: exploring the influence of boundary conditions on the permeability of three-dimensional stochastic reconstructions. Phys. Rev. E 100(5), 053312 (2019)
Gibou, F., Fedkiw, R., Osher, S.: A review of level-set methods and some recent applications. J. Comput. Phys. 353, 82–109 (2018)
Haber, E., Ascher, U.M.: Fast finite volume simulation of 3D electromagnetic problems with highly discontinuous coefficients. SIAM J. Sci. Comput. 22(6), 1943–1961 (2001)
Haber, E., Ascher, U.M., Aruliah, D.A., Oldenburg, D.W.: Fast simulation of 3D electromagnetic problems using potentials. J. Comput. Phys. 163(1), 150–171 (2000)
Hyman, J.D., Winter, C.L.: Stochastic generation of explicit pore structures by thresholding Gaussian random fields. J. Comput. Phys. 277, 16–31 (2014)
Johansen, H., Colella, P.: A cartesian grid embedded boundary method for Poisson’s equation on irregular domains. J. Comput. Phys. 147(1), 60–85 (1998)
Kostin, V., Solovyev, S., Bakulin, A., Dmitriev, M.: Direct frequency-domain 3D acoustic solver with intermediate data compression benchmarked against time-domain modeling for full-waveform inversion applications. Geophysics 84(4), T207–T219 (2019)
Lee, B., Min, C.: Optimal preconditioners on solving the Poisson equation with Neumann boundary conditions. J. Comput. Phys. 433, 110189 (2021)
Lisitsa, V., Podgornova, O., Tcheverda, V.: On the interface error analysis for finite difference wave simulation. Comput. Geosci. 14(4), 769–778 (2010)
Lisitsa, V., Bazaikin, Y., Khachkova, T.: Computational topology-based characterization of pore space changes due to chemical dissolution of rocks. Appl. Math. Model. 88, 21–37 (2020). https://doi.org/10.1016/j.apm.2020.06.037
Molins, S., et al.: Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments. Environ. Sci. Technol. 48(13), 7453–7460 (2014)
Pleshkevich, A., Vishnevskiy, D., Lisitsa, V.: Sixth-order accurate pseudo-spectral method for solving one-way wave equation. Appl. Math. Comput. 359, 34–51 (2019)
Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003)
Samarskii, A.A.: The Theory of Difference Schemes, Pure and Applied Mathematics, vol. 240. CRC Press (2001)
Stuben, K.: A review of algebraic multigrid. J. Comput. Appl. Math. 128(1–2), 281–309 (2001)
Vishnevsky, D., Lisitsa, V., Tcheverda, V., Reshetova, G.: Numerical study of the interface errors of finite-difference simulations of seismic waves. Geophysics 79(4), T219–T232 (2014)
Wiegmann, A., Zemitis, A.: EJ-HEAT: a fast explicit jump harmonic averaging solver for the effective heat conductivity of composite materials (2006)
Zhan, X., Schwartz, L.M., Toksöz, M.N., Smith, W.C., Morgan, F.D.: Pore-scale modeling of electrical and fluid transport in Berea sandstone. Geophysics 75(5), F135–F142 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Khachkova, T., Lisitsa, V. (2021). Poisson Solver for Upscaling the Physical Properties of Porous Materials. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-86653-2_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86652-5
Online ISBN: 978-3-030-86653-2
eBook Packages: Computer ScienceComputer Science (R0)