Skip to main content

Properties of Multipyramidal Elements

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12949))

Included in the following conference series:

  • 1113 Accesses

Abstract

The finite element method is based on the division of the physical domains into a large number of small polytopes with simple geometry. Basically, the most useful finite elements can be divided into two large groups: simplicial elements and hypercubic elements. To keep conformity, triangulating of curved domains with complex geometry requires the usage of various kinds of transitional elements, which are specific for any fixed Euclidean space. The paper deals with a basic problem of the finite element method in the multidimensional spaces - conforming coupling between hypercubic and simplicial meshes. Here we focus on the bipyramidal elements. Some properties of such kind elements are discussed in an arbitrary Euclidean space with a dimension greater than two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ainsworth, M., Fu, G.: A lowest-order composite finite element exact sequence on pyramids. Comput. Methods Appl. Mech. Eng. 324, 110–127 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bedrosian, G.: Shape functions and integration formulas for three-dimensional finite element analysis. Internat. J. Numer. Methods Engrg. 35, 95–108 (1992)

    Article  Google Scholar 

  3. Bedregal, C.: Maria-Cecilia Rivara, Longest-edge algorithms for size-optimal refinement of triangulations. Comput. Aided Des. 46, 246–251 (2014)

    Article  Google Scholar 

  4. Bergot, M., Cohen, G., Duruflé, M.: Higher-order finite elements for hybrid meshes using new nodal pyramidal elements. J. Sci. Comput. 42, 345–381 (2010)

    Article  MathSciNet  Google Scholar 

  5. Bey, J.: Simplicial grid refinement, On Freudenthal’s algorithm and the optimal number of congruence classes. Numer. Math. 85(1), 1–29 (1998)

    Article  MathSciNet  Google Scholar 

  6. Brandts, J., Korotov, S., Křížek, M.: Simplicial finite elements in higher dimensions. Appl. Math. 52(3), 251–265 (2007)

    Article  MathSciNet  Google Scholar 

  7. Ca, C., Qin, Q.-H., Yu, A.: A new hybrid finite element approach for three-dimensional elastic problems. Arch. Mech. 64(3), 261–292 (2012)

    Google Scholar 

  8. Coulomb, J.-L., Zgainski, F.-X., Marechal, Y.: A pyramidal element to link hexahedral, prismatic and tetrahedral edge finite elements. IEEE Trans. Magn. 33(2), 1362–1365 (1997)

    Article  Google Scholar 

  9. Devloo, P., Duran, O., Gomes, S., Ainsworth, M.: High-order composite finite element exact sequences based on tetrahedral-hexahedral-prismatic-pyramidal partitions. hal-02100485 (2019)

    Google Scholar 

  10. Hannukainen, A., Korotov, S., Křížek, M.: On numerical regularity of the face-to-face longest-edge bisection algorithm for tetrahedral partitions. Sci. Comput. Programm. 90(Part A) (2014) Pages 34–41

    Google Scholar 

  11. Hermosillo-Arteaga, A., Romo-Organista, M., Magaña del Toro, R., Carrera-Bolaños, J.: Development of a refinement algorithm for tetrahedral finite elements. Rev. Int. métodos numér. cálc. diseño ing. 37(1), 1–21 (2021)

    Google Scholar 

  12. Korotov, S., Plaza, Á., Suárez, J.P.: Longest-edge n-section algorithms: properties and open problems. J. Comput. Appl. Math. 293, 139–146 (2016)

    Article  MathSciNet  Google Scholar 

  13. Luo, X., Wang, Z., Wang, M., Shi, X.: A variable-scale refinement triangulation algorithm with faults data. J. Comput. 31(5), 212–223 (2020)

    Google Scholar 

  14. O’Malley, B., Kophazi, J., Eaton, M.D., Badalassi, V., Warner, P., Copestake, A.: Pyramid finite elements for discontinuous and continuous discretizations of the neutron diffusion equation with applications to reactor physics. Prog. Nucl. Energy 105, 175–184 (2018)

    Article  Google Scholar 

  15. Martinelli, L.B., Alves, E.C.: Optimization of geometrically nonlinear truss structures under dynamic loading. REM Int. Eng. J. 73(3), 293–301 (2020)

    Google Scholar 

  16. Petrov, M.S., Todorov, T.D.: Properties of the multidimensional finite elements. Appl. Math. Comput. 391, 125695 (2021)

    Google Scholar 

  17. Petrov, M.S., Todorov, T.D.: Refinement strategies related to cubic tetrahedral meshes. Appl. Numer. Math. 137, 169–183 (2019)

    Article  MathSciNet  Google Scholar 

  18. Petrov, M.S., Todorov, T.D., Walters, G., Williams, D.M., Witherden, F.D.: Enabling four-dimensional conformal hybrid meshing with cubic pyramids. Numer. Algorithms (to appear)

    Google Scholar 

  19. Pascucci, V.: Slow growing subdivision (SGS) in any dimension: towards removing the curse of dimensionality. EUROGRAPHICS 21(3), 451–460 (2002)

    Google Scholar 

  20. Perdomo, F., Plaza, Á.: Properties of triangulations obtained by the longest-edge bisection. Central Eur. J. Math. 12(12), 1796–1810 (2014). https://doi.org/10.2478/s11533-014-0448-4

    Article  MathSciNet  MATH  Google Scholar 

  21. Ray, N., Sokolov, D., Reberol, M., Ledoux, F., Lévy, B.: Hex-dominant meshing: mind the gap! Comput. Aided Des. 102, 94–103 (2018)

    Google Scholar 

  22. Verstraaten, T.W., Kosinka, J.: Local and hierarchical refinement for subdivision gradient meshes. Pac. Graph. 37(7), 373–383 (2018)

    Google Scholar 

  23. Yamakawa, S., Gentilini, I., Shimada, K.: Subdivision templates for converting a non-conformal hex-dominant mesh to a conformal hex-dominant mesh without pyramid elements. Eng. Comput. 27, 51–65 (2011)

    Article  Google Scholar 

  24. Yamakawa, S., Shimada, K.: Fully-automated hex-dominant mesh generation with directionality control via packing rectangular solid cells. Int. J. Numer. Methods Eng. 57, 2099–2129 (2003)

    Google Scholar 

  25. Yamakawa, S., Shimada, K.: Increasing the number and volume of hexahedral and prism elements in a hex-dominant mesh by topological transformations. IMR, 403–413 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petrov, M.S., Todorov, T.D. (2021). Properties of Multipyramidal Elements. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics