Skip to main content

A Computational Analysis of the Hopmoc Method Applied to the 2-D Advection-Diffusion and Burgers Equations

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12949))

Included in the following conference series:

  • 1284 Accesses

Abstract

This paper shows the accuracy of the Hopmoc method when applied to a partial differential equation that combines both nonlinear propagation and diffusive effects. Specifically, this paper shows the numerical results yielded by the Hopmoc algorithm when applied to the 2-D advection-diffusion and Burgers equations. The results delivered by the Hopmoc method compare favorably with the Crank-Nicolson method and an alternating direction implicit scheme when applied to the advection-diffusion equation. The experiments with the 2-D Burgers equation also show that the Hopmoc algorithm provides results in agreement with several existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davis, M.E.: Numerical Methods and Modeling for Chemical Engineers. John Wiley and Sons Inc., Hoboken (2001)

    Google Scholar 

  2. Kajishima, T., Taira, K.: Large-eddy simulation. In: Computational Fluid Dynamics, pp. 269–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45304-0_8

    Chapter  MATH  Google Scholar 

  3. Duffy, D.J.: Finite Difference Methods in Financial Engineering a Partial Differential Equation Approach. John Wiley and Sons Inc., Hoboken (2006)

    Google Scholar 

  4. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit runge-kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997)

    Google Scholar 

  5. Pareschi, L., Russo, G.: Implicit-explicit runge-kutta schemes for stiff systems of differential equations. Recent Trends Numer. Anal. 3, 269–289 (2000)

    Google Scholar 

  6. Gourlay, P.: Hopscotch: a fast second order partial differential equation solver. J. Inst. Math. Appl. 6, 375–390 (1970)

    Google Scholar 

  7. Gourlay, A.R.: Some recent methods for the numerical solution of time-dependent partial differential equations. Proc. R. Soc. Math. Phys. Eng. Sci. Ser. A 323(1553), 219–235 (1971)

    Google Scholar 

  8. Gourlay, A.R., Morris, J.L.: Hopscotch difference methods for nonlinear hyperbolic systems. IBM J. Res. Dev. 16, 349–353 (1972)

    Google Scholar 

  9. Oliveira, S., Kischinhevsky, M., Gonzaga de Oliveira, S.L.: Convergence analysis of the Hopmoc method. Int. J. Comput. Math. 86, 1375–1393 (2009)

    Google Scholar 

  10. Douglas, J., Jr. Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19(5), 871–885 (1982)

    Google Scholar 

  11. Robaina, D.T.: BDF-Hopmoc: um método implícito de passo múltiplo para a solução de Equações Diferenciais Parciais baseado em atualizações espaciais alternadas ao longo das linhas características. Ph.D thesis, Universidade Federal Fluminense, Niterói, RJ, Brazil, July 2018

    Google Scholar 

  12. Robaina, D.T., Gonzaga de Oliveira, S.L., Kischnhevsky, M., Osthoff, C., Sena, A.C.: Numerical simulations of the 1-d modified Burgers equation. In: Winter Simulation Conference (WSC). National Harbor, MD, USA 2019, pp. 3231–3242 (2019)

    Google Scholar 

  13. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing. 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  14. Reynolds, O.: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. 174, 935–982 (1883)

    Google Scholar 

  15. Orlandi, P.: The burgers equation. In: Orlandi, P., ed.: Fluid Flow Phenomena. Fluid Mechanics and Its Applications, vol. 55, pp. 40–50. Springer, Dordrecht (2000). https://doi.org/10.1007/978-94-011-4281-6_4

  16. Shi, F., Zheng, H., Cao, Y., Li, J., Zhao, R.: A fast numerical method for solving coupled Burgers’ equations. Numer. Methods Partial Differ. Equ. 33(6), 1823–1838 (2017)

    Google Scholar 

  17. Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Math. Proc. Cambridge Philos. Soc. 43(1), 50–67 (1947)

    Google Scholar 

  18. Saqib, M., Hasnain, S., Mashat, D.S.: Computational solutions of two dimensional convection diffusion equation using Crank-Nicolson and time efficient ADI. Am. J. Comput. Math. 7, 208–227 (2017)

    Google Scholar 

  19. Srivastava, V.K., Singh, S., Awasthi, M.K.: Numerical solutions of coupled Burgers’ equations by an implicit finite-difference scheme. AIP Adv. 3(8), 082131 (2013)

    Google Scholar 

  20. Srivastava, V.K., Awasthi, M.K., Singh, S.: An implicit logarithm finite difference technique for two dimensional coupled viscous Burgers’ equation. AIP Adv. 3(12), 122105 (2013)

    Google Scholar 

  21. Shukla, H.S., Srivastava, M.T.V.K., Kumar, J.: Numerical solution of two dimensional coupled viscous Burgers’ equation using the modified cubic B-spline differential quadrature method. AIP Adv. 4(11), 117134 (2014)

    Google Scholar 

  22. Zhang, T., Jin, J., HuangFu, Y.: The Crank-Nicolson/Adams-Bashforth scheme for the Burgers equation with \({H}^2\) and \({H}^1\) initial data. Appl. Numer. Math. 125, 103–142 (2018)

    Google Scholar 

  23. Çelikten, G., Aksan, E.N.: Alternating direction implicit method for numerical solutions of 2-D Burgers equations. Thermal Sci. 23(1), S243–S252 (2019)

    Google Scholar 

  24. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Google Scholar 

  25. Toivanen, J., Avery, P., Farhat, C.: A multilevel FETI-DP method and its performance for problems with billions of degrees of freedom. Int. J. Numer. Method Eng. 116(10–11), 661–682 (2018)

    Google Scholar 

  26. Smith, C.W., Abeysinghe, E., Marru, S., Jansen, K.E.: PHASTA science gateway for high performance computational fluid dynamics. In: PEARC ’18 - Proceedings of the Practice and Experience on Advanced Research Computing, Pittsburgh, PA, ACM, vol. 94, July 2018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. T. Robaina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Robaina, D.T., Kischinhevsky, M., de Oliveira, S.L.G., Sena, A.C., Junior, M.J. (2021). A Computational Analysis of the Hopmoc Method Applied to the 2-D Advection-Diffusion and Burgers Equations. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics