Abstract
This paper shows the accuracy of the Hopmoc method when applied to a partial differential equation that combines both nonlinear propagation and diffusive effects. Specifically, this paper shows the numerical results yielded by the Hopmoc algorithm when applied to the 2-D advection-diffusion and Burgers equations. The results delivered by the Hopmoc method compare favorably with the Crank-Nicolson method and an alternating direction implicit scheme when applied to the advection-diffusion equation. The experiments with the 2-D Burgers equation also show that the Hopmoc algorithm provides results in agreement with several existing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Davis, M.E.: Numerical Methods and Modeling for Chemical Engineers. John Wiley and Sons Inc., Hoboken (2001)
Kajishima, T., Taira, K.: Large-eddy simulation. In: Computational Fluid Dynamics, pp. 269–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45304-0_8
Duffy, D.J.: Finite Difference Methods in Financial Engineering a Partial Differential Equation Approach. John Wiley and Sons Inc., Hoboken (2006)
Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit runge-kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997)
Pareschi, L., Russo, G.: Implicit-explicit runge-kutta schemes for stiff systems of differential equations. Recent Trends Numer. Anal. 3, 269–289 (2000)
Gourlay, P.: Hopscotch: a fast second order partial differential equation solver. J. Inst. Math. Appl. 6, 375–390 (1970)
Gourlay, A.R.: Some recent methods for the numerical solution of time-dependent partial differential equations. Proc. R. Soc. Math. Phys. Eng. Sci. Ser. A 323(1553), 219–235 (1971)
Gourlay, A.R., Morris, J.L.: Hopscotch difference methods for nonlinear hyperbolic systems. IBM J. Res. Dev. 16, 349–353 (1972)
Oliveira, S., Kischinhevsky, M., Gonzaga de Oliveira, S.L.: Convergence analysis of the Hopmoc method. Int. J. Comput. Math. 86, 1375–1393 (2009)
Douglas, J., Jr. Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19(5), 871–885 (1982)
Robaina, D.T.: BDF-Hopmoc: um método implícito de passo múltiplo para a solução de Equações Diferenciais Parciais baseado em atualizações espaciais alternadas ao longo das linhas características. Ph.D thesis, Universidade Federal Fluminense, Niterói, RJ, Brazil, July 2018
Robaina, D.T., Gonzaga de Oliveira, S.L., Kischnhevsky, M., Osthoff, C., Sena, A.C.: Numerical simulations of the 1-d modified Burgers equation. In: Winter Simulation Conference (WSC). National Harbor, MD, USA 2019, pp. 3231–3242 (2019)
Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing. 2nd edn. Cambridge University Press, Cambridge (1992)
Reynolds, O.: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. 174, 935–982 (1883)
Orlandi, P.: The burgers equation. In: Orlandi, P., ed.: Fluid Flow Phenomena. Fluid Mechanics and Its Applications, vol. 55, pp. 40–50. Springer, Dordrecht (2000). https://doi.org/10.1007/978-94-011-4281-6_4
Shi, F., Zheng, H., Cao, Y., Li, J., Zhao, R.: A fast numerical method for solving coupled Burgers’ equations. Numer. Methods Partial Differ. Equ. 33(6), 1823–1838 (2017)
Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Math. Proc. Cambridge Philos. Soc. 43(1), 50–67 (1947)
Saqib, M., Hasnain, S., Mashat, D.S.: Computational solutions of two dimensional convection diffusion equation using Crank-Nicolson and time efficient ADI. Am. J. Comput. Math. 7, 208–227 (2017)
Srivastava, V.K., Singh, S., Awasthi, M.K.: Numerical solutions of coupled Burgers’ equations by an implicit finite-difference scheme. AIP Adv. 3(8), 082131 (2013)
Srivastava, V.K., Awasthi, M.K., Singh, S.: An implicit logarithm finite difference technique for two dimensional coupled viscous Burgers’ equation. AIP Adv. 3(12), 122105 (2013)
Shukla, H.S., Srivastava, M.T.V.K., Kumar, J.: Numerical solution of two dimensional coupled viscous Burgers’ equation using the modified cubic B-spline differential quadrature method. AIP Adv. 4(11), 117134 (2014)
Zhang, T., Jin, J., HuangFu, Y.: The Crank-Nicolson/Adams-Bashforth scheme for the Burgers equation with \({H}^2\) and \({H}^1\) initial data. Appl. Numer. Math. 125, 103–142 (2018)
Çelikten, G., Aksan, E.N.: Alternating direction implicit method for numerical solutions of 2-D Burgers equations. Thermal Sci. 23(1), S243–S252 (2019)
Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)
Toivanen, J., Avery, P., Farhat, C.: A multilevel FETI-DP method and its performance for problems with billions of degrees of freedom. Int. J. Numer. Method Eng. 116(10–11), 661–682 (2018)
Smith, C.W., Abeysinghe, E., Marru, S., Jansen, K.E.: PHASTA science gateway for high performance computational fluid dynamics. In: PEARC ’18 - Proceedings of the Practice and Experience on Advanced Research Computing, Pittsburgh, PA, ACM, vol. 94, July 2018
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Robaina, D.T., Kischinhevsky, M., de Oliveira, S.L.G., Sena, A.C., Junior, M.J. (2021). A Computational Analysis of the Hopmoc Method Applied to the 2-D Advection-Diffusion and Burgers Equations. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-86653-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86652-5
Online ISBN: 978-3-030-86653-2
eBook Packages: Computer ScienceComputer Science (R0)