Abstract
We consider covering labeled trees by a collection of paths with the same string label, called a (string) cover of a tree. We show how to compute all covers of a directed (rooted) labeled tree in \({\mathcal {O}}(n \log n/\log \log n)\) time and all covers of an undirected labeled tree in \({\mathcal {O}}(n^2)\) time and space or in \({\mathcal {O}}(n^2 \log n)\) time and \({\mathcal {O}}(n)\) space. We also show several essential differences between covers in standard strings and covers in trees.
Work supported by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alatabbi, A., Rahman, M.S., Smyth, W.F.: Computing covers using prefix tables. Discret. Appl. Math. 212, 2–9 (2016). https://doi.org/10.1016/j.dam.2015.05.019
Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In: 39th Annual Symposium on Foundations of Computer Science, FOCS ’98, pp. 534–544. IEEE Computer Society, Palo Alto, California, USA (1998). https://doi.org/10.1109/SFCS.1998.743504
Antoniou, P., Crochemore, M., Iliopoulos, C.S., Jayasekera, I., Landau, G.M.: Conservative string covering of indeterminate strings. In: Holub, J., Zdárek, J. (eds.) Proceedings of the Prague Stringology Conference 2008, Prague, Czech Republic, 1–3 September 2008, pp. 108–115. Prague Stringology Club, Department of Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague (2008). http://www.stringology.org/event/2008/p10.html
Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing for strings. Inf. Process. Lett. 39(1), 17–20 (1991). https://doi.org/10.1016/0020-0190(91)90056-N
Barton, C., Kociumaka, T., Liu, C., Pissis, S.P., Radoszewski, J.: Indexing weighted sequences: neat and efficient. Inf. Comput. 270, 104462 (2020). https://doi.org/10.1016/j.ic.2019.104462
Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 508–515. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45995-2_44
Breslauer, D.: An on-line string superprimitivity test. Inf. Process. Lett. 44(6), 345–347 (1992). https://doi.org/10.1016/0020-0190(92)90111-8
Brlek, S., Lafrenière, N., Provençal, X.: Palindromic complexity of trees. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 155–166. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21500-6_12
Charalampopoulos, P., Radoszewski, J., Rytter, W., Waleń, T., Zuba, W.: Computing covers of 2D-strings. In: Gawrychowski, P., Starikovskaya, T. (eds.) 32nd Annual Symposium on Combinatorial Pattern Matching, CPM 2021, 5–7 July 2021, Wrocław, Poland. LIPIcs, vol. 191, pp. 12:1–12:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.CPM.2021.12
Crochemore, M., et al.: The maximum number of squares in a tree. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 27–40. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31265-6_3
Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Covering problems for partial words and for indeterminate strings. Theor. Comput. Sci. 698, 25–39 (2017). https://doi.org/10.1016/j.tcs.2017.05.026
Funakoshi, M., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Computing maximal palindromes and distinct palindromes in a trie. In: Holub, J., Zdárek, J. (eds.) Prague Stringology Conference 2019, Prague, Czech Republic, 26–28 August 2019, pp. 3–15. Czech Technical University in Prague, Faculty of Information Technology, Department of Theoretical Computer Science (2019). http://www.stringology.org/event/2019/p02.html
Gawrychowski, P., Kociumaka, T., Rytter, W., Waleń, T.: Tight bound for the number of distinct palindromes in a tree. In: Iliopoulos, C.S, Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp. 270–276. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23826-5_26
Gawrychowski, P., Kociumaka, T., Rytter, W., Waleń, T.: Tight bound for the number of distinct palindromes in a tree. CoRR abs/2008.13209 (2020). arXiv:2008.13209
Harary, F.: Graph Theory. Reading, Addison-Wesley, Boston, MA (1994)
Iliopoulos, C.S., Mohamed, M., Mouchard, L., Perdikuri, K., Smyth, W.F., Tsakalidis, A.K.: String regularities with don’t cares. Nordic J. Comput. 10(1), 40–51 (2003)
Kikuchi, N., Hendrian, D., Yoshinaka, R., Shinohara, A.: Computing covers under substring consistent equivalence relations. In: Boucher, C., Thankachan, S.V. (eds.) SPIRE 2020. LNCS, vol. 12303, pp. 131–146. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59212-7_10
Kociumaka, T., Pachocki, J., Radoszewski, J., Rytter, W., Waleń, T.: Efficient counting of square substrings in a tree. Theor. Comput. Sci. 544, 60–73 (2014). https://doi.org/10.1016/j.tcs.2014.04.015
Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: String powers in trees. Algorithmica 79(3), 814–834 (2017). https://doi.org/10.1007/s00453-016-0271-3
Kociumaka, T., Radoszewski, J., Wiśniewski, B.: Subquadratic-time algorithms for abelian stringology problems. In: Kotsireas, I.S., Rump, S.M., Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 320–334. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32859-1_27
Kociumaka, T., Radoszewski, J., Wiśniewski, B.: Subquadratic-time algorithms for abelian stringology problems. AIMS Med. Sci. 4(3), 332–351 (2017). https://doi.org/10.3934/ms.2017.3.332
Kosaraju, S.R.: Efficient tree pattern matching (preliminary version). In: 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina, USA, 30 October–1 November 1989, pp. 178–183. IEEE Computer Society (1989). https://doi.org/10.1109/SFCS.1989.63475
Matsuda, S., Inenaga, S., Bannai, H., Takeda, M.: Computing abelian covers and abelian runs. In: Holub, J., Zdárek, J. (eds.) Proceedings of the Prague Stringology Conference 2014, Prague, Czech Republic, 1–3 September 2014, pp. 43–51. Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University in Prague (2014). http://www.stringology.org/event/2014/p05.html
Moore, D.W.G., Smyth, W.F.: An optimal algorithm to compute all the covers of a string. Inf. Process. Lett. 50(5), 239–246 (1994). https://doi.org/10.1016/0020-0190(94)00045-X
Moore, D.W.G., Smyth, W.F.: A correction to “An optimal algorithm to compute all the covers of a string". Inf. Process. Lett. 54(2), 101–103 (1995). https://doi.org/10.1016/0020-0190(94)00235-Q
Popa, A., Tanasescu, A.: An output-sensitive algorithm for the minimization of 2-dimensional string covers. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 536–549. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6_33
Radoszewski, J., Straszyński, J.: Efficient computation of 2-covers of a string. In: Grandoni, F., Herman, G., Sanders, P. (eds.) 28th Annual European Symposium on Algorithms, ESA 2020, 7–9 September 2020, Pisa, Italy (Virtual Conference). LIPIcs, vol. 173, pp. 77:1–77:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ESA.2020.77
Shibuya, T.: Constructing the suffix tree of a tree with a large alphabet. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E86–A(5), 1061–1066 (2003)
Sugahara, R., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Computing runs on a trie. In: Pisanti, N., Pissis, S.P. (eds.) 30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019, June 18–20, 2019, Pisa, Italy. LIPIcs, vol. 128, pp. 23:1–23:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.CPM.2019.23
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Radoszewski, J., Rytter, W., Straszyński, J., Waleń, T., Zuba, W. (2021). String Covers of a Tree. In: Lecroq, T., Touzet, H. (eds) String Processing and Information Retrieval. SPIRE 2021. Lecture Notes in Computer Science(), vol 12944. Springer, Cham. https://doi.org/10.1007/978-3-030-86692-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-86692-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86691-4
Online ISBN: 978-3-030-86692-1
eBook Packages: Computer ScienceComputer Science (R0)