Skip to main content

Improvement of Visual Perception in Humanoid Robots Using Heterogeneous Architectures for Autonomous Applications

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2021)

Abstract

Humanoid robots find application in a variety of tasks such as emotional recognition for human-robot interaction (HRI). Despite their capabilities, these robots have a sequential computing system that limits the execution of high computational cost algorithms such as Convolutional Neural Networks (CNNs), which have shown good performance in recognition tasks. This limitation reduces their performance in HRI applications. As an alternative to sequential computing units are Field-programmable gate arrays (FPGAs) and Graphics Processing Units (GPUs), which have a high degree of parallelism, high performance, and low power consumption. In this paper, we propose a visual perception enhancement system for humanoid robots using FPGA or GPU based embedded systems running a CNN, while maintaining autonomy through an external computational system added to the robot structure. Our work has as a case study the humanoid robot NAO, however, the work can be replicated on other robots such as Pepper and Robotis OP3. The development boards used were the Xilinx Ultra96 FPGA, Intel Cyclone V SoC FPGA and Nvidia Jetson TX2 GPU. Nevertheless, our design allows the integration of other heterogeneous architectures with high parallelism and low power consumption. The Tinier-Yolo, Alexnet and Inception-V1 CNNs are executed and real-time results were obtained for the FPGA and GPU cards, while in Alexnet, the expected results were presented in the Jetson TX2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fanello, S.R., et al.: Visual recognition for humanoid robots. Robot. Auton. Syst. 91, 151–168 (2017)

    Article  Google Scholar 

  2. Cha, E., Matarić, M., Fong, T.: Nonverbal signaling for non-humanoid robots during human-robot collaboration. In: 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 601–602. IEEE (2016)

    Google Scholar 

  3. Shamsuddin, S.: Initial response of autistic children in human-robot interaction therapy with humanoid robot NAO. In: IEEE 8th International Colloquium on Signal Processing and its Applications, pp. 188–193. IEEE (2012)

    Google Scholar 

  4. Sermanet, P., et al. OverFeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)

  5. Nguyen, H.V., et al.: DASH-N: joint hierarchical domain adaptation and feature learning. IEEE Trans. Image Process. 24(12), 5479–5491 (2017)

    Article  MathSciNet  Google Scholar 

  6. Podpora, M., Gardecki, A.: Extending vision understanding capabilities of NAO robot by connecting it to a remote computational resource. In: Progress in Applied Electrical Engineering (PAEE), pp. 1–5. IEEE (2016)

    Google Scholar 

  7. Puheim, M., Bundzel, M., Madarász, L.: Forward control of robotic arm using the information from stereo-vision tracking system. In: IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI), pp. 57–62. IEEE (2013)

    Google Scholar 

  8. Noda, K., et al.: Multimodal integration learning of robot behavior using deep neural networks. Robot. Auton. Syst. 62(6), 721–736 (2014)

    Article  Google Scholar 

  9. Biddulph, A., Houliston, T., Mendes, A., Chalup, S.K.: Comparing computing platforms for deep learning on a humanoid robot. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11307, pp. 120–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04239-4_11

    Chapter  Google Scholar 

  10. Dundar, A., et al.: Embedded streaming deep neural networks accelerator with applications. IEEE Trans. Neural Netw. Learn. Syst. 28(7), 1572–1583 (2016)

    Article  MathSciNet  Google Scholar 

  11. Sozzo, D.E.L., Emanuele, O.: The automation of high level synthesis of convolutional neural networks. . In: IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 217–244. IEEE (2016)

    Google Scholar 

  12. Zhang, C., et al.: Caffeine: toward uniformed representation and acceleration for deep convolutional neural networks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38(11), 2072–2085 (2018)

    Google Scholar 

  13. Zhang, C., et al.: Optimizing FPGA-based accelerator design for deep convolutional neural networks. In: Proceedings of the 2015 ACM/SIGDA International Symposium on Field-programmable Gate Arrays, pp. 161–170 (2015)

    Google Scholar 

  14. Blott, M., et al.: FINN-R: an end-to-end deep-learning framework for fast exploration of quantized neural networks. ACM Trans. Reconfig. Technol. Syst. (TRETS) 11(3), 1–23 (2018)

    Google Scholar 

  15. Wang, D., Xu, K., Jiang, D.: PipeCNN: an OpenCL-based open-source FPGA accelerator for convolution neural networks. In: 2017 International Conference on Field Programmable Technology (ICFPT), pp. 279–282. IEEE (2017)

    Google Scholar 

  16. Modasshir, M., Li, A.Q., Rekleitis, I.: Deep neural networks: a comparison on different computing platforms. In: 2018 15th Conference on Computer and Robot Vision (CRV), pp. 383–389. IEEE (2018)

    Google Scholar 

  17. Liang, S., et al.: FP-BNN: binarized neural network on FPGA. Neurocomputing 275, 1072–1086 (2018)

    Article  Google Scholar 

  18. Xu, S.: Real-time implementation of YOLO+ JPDA for small scale UAV multiple object tracking. In: international conference on unmanned aircraft systems (ICUAS), pp. 1336–1341. IEEE (2018)

    Google Scholar 

  19. Ma, J., Chen, L., Gao, Z.: Hardware implementation and optimization of tiny-YOLO network. In: Zhai, G., Zhou, J., Yang, X. (eds.) IFTC 2017. CCIS, vol. 815, pp. 224–234. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-8108-8_21

    Chapter  Google Scholar 

  20. Pot, E., et al.: Choregraphe: a graphical tool for humanoid robot programming. In: RO-MAN 2009-The 18th IEEE International Symposium on Robot and Human Interactive Communication, pp. 46–51. IEEE (2009)

    Google Scholar 

  21. Mattamala, M., Olave, G., González, C., Hasbún, N., Ruiz-del-Solar, J.: The NAO backpack: an open-hardware add-on for fast software development with the NAO robot. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 302–311. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1_25

    Chapter  Google Scholar 

  22. Cosmas, K., Kenichi, A.: Utilization of FPGA for onboard inference of landmark localization in CNN-based spacecraft pose estimation. Aerospace 7(11), 159 (2009)

    Article  Google Scholar 

  23. Andri, R.: YodaNN: an ultra-low power convolutional neural network accelerator based on binary weights. In: IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 236–241. IEEE (2016)

    Google Scholar 

  24. Ni, L., et al.: An energy-efficient digital ReRAM-crossbar-based CNN with bitwise parallelism. IEEE Jo. Explor. Solid-State Comput. Devices Circuits 3, 37–46 (2017)

    Google Scholar 

  25. MICHEL, Olivier. Cyberbotics Ltd., Webots\(^{\rm TM}\): professional mobile robot simulation. International Journal of Advanced Robotic Systems, 2004, vol. 1, no 1, p. 5

    Google Scholar 

  26. Franklin, D.: NVIDIA Jetson TX2 Delivers Twice the Intelligence to the Edge (2017). https://devblogs.nvidia.com/jetson-tx2-delivers-twiceintelligence-edge/. Accessed 02 Nov 2019

Download references

Acknowledgements

This study were supported by the AE&CC research Group COL0053581, at the Sistemas de Control y Robótica Laboratory, attached to the Instituto Tecnológico Metropolitano. This work is part of the project “Improvement of visual perception in humanoid robots for objects recognition in natural environments using Deep Learning” with ID P17224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquin Guajo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guajo, J., Anzola, C.A., Betancur, D., Castaño-Londoño, L., Marquez-Viloria, D. (2021). Improvement of Visual Perception in Humanoid Robots Using Heterogeneous Architectures for Autonomous Applications. In: Figueroa-García, J.C., Díaz-Gutierrez, Y., Gaona-García, E.E., Orjuela-Cañón, A.D. (eds) Applied Computer Sciences in Engineering. WEA 2021. Communications in Computer and Information Science, vol 1431. Springer, Cham. https://doi.org/10.1007/978-3-030-86702-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86702-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86701-0

  • Online ISBN: 978-3-030-86702-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics