Skip to main content

Breast Fine Needle Cytological Classification Using Deep Hybrid Architectures

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12950))

Included in the following conference series:

Abstract

Diagnosis of breast cancer in the early stages allows to significantly decrease the mortality rate by allowing to choose the adequate treatment. This paper develops and evaluates twenty-eight hybrid architectures combining seven recent deep learning techniques for feature extraction (DenseNet 201, Inception V3, Inception ReseNet V2, MobileNet V2, ResNet 50, VGG16 and VGG19), and four classifiers (MLP, SVM, DT and KNN) for binary classification of breast cytological images over the FNAC dataset. To evaluate the designed architectures, we used: (1) four classification performance criterias (accuracy, precision, recall and F1-score), (1) Scott Knott (SK) statistical test to cluster the developed architectures and identify the best cluster of the outperforming architectures, and (2) Borda Count voting method to rank the best performing architectures. Results showed the potential of combining deep learning techniques for feature extraction and classical classifiers to classify breast cancer in malignant and benign tumors. The hybrid architectures using MLP classifier and DenseNet 201 for feature extraction were the top performing architectures with a higher accuracy value reaching 99% over the FNAC dataset. As results, the findings of this study recommend the use of the hybrid architectures using DenseNet 201 for the feature extraction of the breast cancer cytological images since it gave the best results for the FNAC data images, especially if combined with the MLP classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

In order to shorten the names of the hybrid architectures:

We use the following naming rules in the rest of this paper: Classifier DeepLearningArchitecture

References

  1. Metelko, Z., et al.: Pergamon the world health organization quality of life (WHOQOL): position paper from WHO. Soc. Sci. Med. 41(10), 1403–1409 (1995)

    Article  Google Scholar 

  2. Sung, H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 1–41 (2021)

    Article  Google Scholar 

  3. Bish, A., Ramirez, A., Burgess, C., Hunter, M.: Understanding why women delay in seeking help for breast cancer symptoms. J. Psychosom. Res. 58(4), 321–326 (2005)

    Article  Google Scholar 

  4. Zhang, G., Wang, W., Moon, J., Pack, J.K., Jeon, S.I.: A review of breast tissue classification in mammograms. In: Proceedings of the 2011 ACM Symposium on Research in Applied Computation RACS 2011, pp. 232–237 (2011)

    Google Scholar 

  5. Mendelson, E.B.: Imaging: potentials and limitations. Am. J. Roentgenol. 212(2), 293–299 (2019). https://doi.org/10.2214/AJR.18.20532

    Article  Google Scholar 

  6. Zerouaoui, H., Idri, A.: Reviewing machine learning and image processing based decision-making systems for breast cancer imaging. J. Med. Sys. 45(1), 1–20 (2021)

    Article  Google Scholar 

  7. Zerouaoui H., Idri A., El Asnaoui K.: Machine Learning and Image Processing for Breast Cancer: A Systematic Map. In: Rocha Á., Adeli H., Reis L., Costanzo S., Orovic I., Moreira F. (eds.) Trends and Innovations in Information Systems and Technologies. WorldCIST 2020. Advances in Intelligent Systems and Computing, vol. 1161. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45697-9_5

    Google Scholar 

  8. Idri, A., Chlioui, I., El Ouassif, B.: A systematic map of data analytics in breast cancer. In: International Conference Proceedings Series (2018)

    Google Scholar 

  9. Ouassif, E., Idri, A., Hosni, M., Abran, A.: Classification techniques in breast cancer diagnosis: a systematic literature review. Comput. Methods Biomech. Biomed. Eng. Imag. Vis. 9(1), 50–77 (2000)

    Google Scholar 

  10. Yan, R. et al.: A hybrid convolutional and recurrent deep neural network for breast cancer pathological image classification. In: International Conference on Bioinformatics and Biomedicine (BIBM 2018), pp. 957–962 (2019)

    Google Scholar 

  11. Mendel, K., Li, H., Sheth, D., Giger, M.: Transfer learning from convolutional neural networks for computer-aided diagnosis: a comparison of digital breast tomosynthesis and full-field digital mammography. Acad. Radiol. 26(6), 735–743 (2019)

    Article  Google Scholar 

  12. Valueva, M.V., Nagornov, N.N., Lyakhov, P.A., Valuev, G.V., Chervyakov, N.I.: ScienceDirect application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Math. Comput. Simul. 177, 232–243 (2020)

    Article  Google Scholar 

  13. Cordeiro, F.R., Santos, W.P., Silva-Filho, A.G.: A semi-supervised fuzzy GrowCut algorithm to segment and classify regions of interest of mammographic images. Expert Syst. Appl. 65, 116–126 (2016)

    Article  Google Scholar 

  14. Deniz, E., Şengür, A., Kadiroğlu, Z., Guo, Y., Bajaj, V., Budak, Ü.: Transfer learning based histopathologic image classification for breast cancer detection. Heal. Inf. Sci. Syst. 6(1), 18 (2018)

    Article  Google Scholar 

  15. Abdar, M., Makarenkov, V.: CWV-BANN-SVM ensemble learning classifier for an accurate diagnosis of breast cancer. Measurement 146, 557–570 (2019)

    Article  Google Scholar 

  16. Ottoni, A.L.C., Nepomuceno, E.G., de Oliveira, M.S., de Oliveira, D.C.R.: Tuning of reinforcement learning parameters applied to SOP using the Scott-Knott method. Soft Comput. 24(6), 4441–4453 (2020)

    Article  Google Scholar 

  17. Idri, A., Hosni, M., Abran, A.: Improved estimation of software development effort using Classical and fuzzy analogy ensembles. Appl. Soft Comput. J. 49, 990–1019 (2016)

    Article  Google Scholar 

  18. Mittas, N., Angelis, L.: Ranking and clustering software cost estimation models through a multiple comparisons algorithm. IEEE Trans. Softw. Eng. 39(4), 537–551 (2013)

    Article  Google Scholar 

  19. Mittas, N., Mamalikidis, I., Angelis, L.: A framework for comparing multiple cost estimation methods using an automated visualization toolkit. Inf. Softw. Technol. 57(1), 310–328 (2015)

    Article  Google Scholar 

  20. Idri, A., Bouchra, E., Hosni, M., Abnane, I.: Assessing the impact of parameters tuning in ensemble based breast cancer classification. Health Technol. (Berl) 10(5), 1239–1255 (2020)

    Article  Google Scholar 

  21. Jolliffe, I.T., Allen, O.B., Christie, B.R.: Comparison of variety means using cluster analysis and dendrograms. Exp. Agric. 25(2), 259–269 (1989). https://doi.org/10.1017/S0014479700016768

    Article  Google Scholar 

  22. Calinski, T., Corsten, L.C.A.: Clustering means in ANOVA by simultaneous testing. Biometrics 41(1), 39 (1985)

    Article  Google Scholar 

  23. Worsley, K.J.: Confidence regions and tests for a change-point in a sequence of exponential family random variables. Biometrika 73(1), 91–104 (1986)

    Article  MathSciNet  Google Scholar 

  24. Emerson, P.: The original Borda count and partial voting. Soc. Choice Welfare 40(2), 353–358 (2013)

    Article  MathSciNet  Google Scholar 

  25. García-Lapresta, J.L., Martínez-Panero, M.: Borda count versus approval voting: a fuzzy approach. Public Choice 112(1), 167–184 (2002)

    Article  Google Scholar 

  26. Black, D.: Partial justification of the Borda count. Public Choice 28(1), 1–15 (1976)

    Article  Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations (ICLR 2015) - Conference Track Proceedings, pp. 1–14 (2015)

    Google Scholar 

  28. Szegedy, C., Vanhoucke, V., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision (2014)

    Google Scholar 

  29. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI'17). AAAI Press, pp. 4278–4284 (2017)

    Google Scholar 

  30. Saikia, A.R., Bora, K., Mahanta, L.B., Das, A.K.: Comparative assessment of CNN architectures for classification of breast FNAC images. Tissue Cell 57, 8–14 (2019)

    Article  Google Scholar 

  31. Razzak, M.I., Naz, S., Zaib, A.: Deep learning for medical image processing: overview, challenges and the future. In: Dey, N., Ashour, A., Borra, S. (eds.) Classification in BioApps. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65981-7_12

  32. Kharel, N., Alsadoon, A., Prasad, P.W.C., Elchouemi, A.: Early diagnosis of breast cancer using contrast limited adaptive histogram equalization (CLAHE) and morphology methods. In: 2017 8th International Conference on Information and Communication Systems (ICICS 2017), pp. 120–124 (2017)

    Google Scholar 

  33. Makandar, A., Halalli, B.: Breast cancer image enhancement using median filter and CLAHE. Int. J. Sci. Eng. Res. 6(4), 462–465 (2015)

    Google Scholar 

  34. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning (2017)

    Google Scholar 

  35. Azzeh, M., Nassif, A.B., Minku, L.L.: An empirical evaluation of ensemble adjustment methods for analogy-based effort estimation. J. Syst. Softw. 103, 36–52 (2015)

    Article  Google Scholar 

  36. Idri, A., Abnane, I., Abran, A.: Evaluating Pred(p) and standardized accuracy criteria in software development effort estimation. J. Softw. Evol. Process 30(4), 1–15 (2018)

    Article  Google Scholar 

  37. Idri, A., Abnane, I.: Fuzzy analogy based effort estimation: an empirical comparative study. In: IEEE CIT 2017-17th IEEE International Conference on Computer and Information Technology, no. Ml, pp. 114–121 (2017)

    Google Scholar 

  38. Chougrad, H., Zouaki, H., Alheyane, O.: Deep convolutional neural networks for breast cancer screening. Comput. Methods Programs Biomed. 157, 19–30 (2018)

    Article  Google Scholar 

  39. Xu, Y., Goodacre, R.: On splitting training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J. Anal. Test. 2(3), 249–262 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work was conducted under the research project “Machine Learning based Breast Cancer Diagnosis and Treatment”, 2020–2023. The authors would like to thank the Moroccan Ministry of Higher Education and Scientific Research, Digital Development Agency (ADD), CNRST, and UM6P for their support.

This study was funded by Mohammed VI polytechnic university at Ben Guerir Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Idri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zerouaoui, H., Idri, A., Nakach, F.Z., Hadri, R.E. (2021). Breast Fine Needle Cytological Classification Using Deep Hybrid Architectures. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12950. Springer, Cham. https://doi.org/10.1007/978-3-030-86960-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86960-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86959-5

  • Online ISBN: 978-3-030-86960-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics