Skip to main content

Modelling of Moisture Effect in Safety Evaluation of Soil-Interacting Masonry Wall Structures

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12950))

Included in the following conference series:

  • 1390 Accesses

Abstract

This paper deals with analytical models of retaining walls interacting with soil, whose mechanical properties are influenced by penetrating moisture. Specifically, urban masonry walls are here considered. The proposed simplified procedure takes rainfalls as the intensity measure dependent on rain duration and return period. Growing levels of imbibition of the soil behind the wall determine a de-crease of the strength parameters of the soil. A geometry of the section at each step of imbibition is analyzed considering a set of soil layers with modified properties over time. The method is applied to a section of the Volterra historical urban walls named “Sperone” which was affected by a relevant collapse occurred in March 2014: a back analysis of the soil-structure section is also proposed to re-place the collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Puppio, M.L., Vagaggini, E., Giresini, L., Sassu, M.: Large-scale survey method for the integrity of historical urban walls: application to the case of Volterra (Italy). Procedia Struct. Integrity 28, 330–343 (2020). https://doi.org/10.1016/j.prostr.2020.10.039

  2. Andreini, M., De Falco, A., Giresini, L., Sassu, M.: Recenti eventi di crollo in mura storiche urbane (May), pp. 14–16, (2015).

    Google Scholar 

  3. Sassu, M., Andreini, M., Casapulla, C., De Falco, A.: Archaeological consolidation of UNESCO masonry structures in Oman: the sumhuram citadel of khor rori and the al balid fortress. Int. J. Archit. Herit. 7(4), 339–374 (2013). https://doi.org/10.1080/15583058.2012.665146

    Article  Google Scholar 

  4. Sassu, M., Giresini, L., Bonannini, E., Puppio, M.: On the use of vibro-compressed units with bio-natural aggregate. Buildings 6(3), 40 (2016). https://doi.org/10.3390/buildings6030040

    Article  Google Scholar 

  5. Casapulla, C., Argiento, L.U., Maione, A.: Seismic safety assessment of a masonry building according to Italian Guidelines on cultural heritage: simplified mechanical-based approach and pushover analysis. Bull. Earthq. Eng. 16(7), 2809–2837 (2017). https://doi.org/10.1007/s10518-017-0281-9

    Article  Google Scholar 

  6. Casapulla, C., Maione, A., Argiento, L.U.: Seismic analysis of an existing masonry building according to the multi-level approach of the Italian guidelines on cultural heritage. Ing. Sismica 34(1), 40–59 (2017)

    Google Scholar 

  7. Puppio, M.L., Vagaggini, E., Giresini, L., Sassu, M.: Landslide analysis of historical urban walls : the case study of Volterra, pp. 1–29 (January 2014)

    Google Scholar 

  8. Alvioli, M., et al.: Implications of climate change on landslide hazard in central Italy. Sci. Total Environ. 630, 1528–1543 (2018). https://doi.org/10.1016/j.scitotenv.2018.02.315

    Article  Google Scholar 

  9. Puppio, M.L., Giresini, L.: Estimation of tensile mechanical parameters of existing masonry through the analysis of the collapse of Volterra’s urban walls. Frat. ed Integrita Strutt. 13(49), 725–738 (2019). https://doi.org/10.3221/IGF-ESIS.49.65

    Article  Google Scholar 

  10. Lazzari, M., Piccarreta, M., Manfreda, S.: The role of antecedent soil moisture conditions on rainfall-triggered shallow landslides. Nat. Hazards Earth Syst. Sci. (December), pp. 1–11 (2018). https://doi.org/10.5194/nhess-2018-371

  11. Puppio, M. L., Vagaggini, E., Giresini, L., Sassu, M.: Large-scale survey method for the integrity of historical urban walls : application to the case of Volterra (Italy). In: VECF1 - 1st Virtual European Conference on Fracture, pp. 1–14 (2019)

    Google Scholar 

  12. Mistretta, F., Sanna, G., Stochino, F., Vacca, G.: Structure from motion point clouds for structural monitoring. Remote Sens. 11(16), 1940 (2019). https://doi.org/10.3390/rs11161940

    Article  Google Scholar 

  13. Pucci, A., Sousa, H.S., Puppio, M.L., Giresini, L., Matos, J.C., Sassu, M.: Method for sustainable large-scale bridge survey.pdf. In: Towards a Resilient Built Environment Risk and Asset Management, pp. 1034–1041 (2019)

    Google Scholar 

  14. Montrasio, L., Valentino, R.: A model for triggering mechanisms of shallow landslides. Nat. Hazards Earth Syst. Sci. 8(5), 1149–1159 (2008). https://doi.org/10.5194/nhess-8-1149-2008

    Article  Google Scholar 

  15. Yoshida, Y., Kuwano, J., Kuwano, R.: Effects of saturation on shear strenght of soils. Soils Found. 31(1), 181–186 (1991)

    Article  Google Scholar 

  16. Kristo, C., Rahardjo, H., Satyanaga, A.: Effects of variations in rainfall intensity on slope stability in Singapore. Int. Soil Water Conserv. Res. 5, 258–264 (2017). https://doi.org/10.1016/j.swcr.2017.07.001

    Article  Google Scholar 

  17. Croce, P., Formichi, P., Landi, F., Marsili, F.: Influence of climate change on extreme values of rainfall, In: IMSCI 2018 - 12th International Multi-conference on Society, Cybernetics and Informatics, Proceedings, vol. 1, pp. 132–137 (2018). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056534760&partnerID=40&md5=92e34ccc29e7fa72a35eb98256ec59ee

  18. Pucci, A., Sousa, H.M., Matos, J.C.: Predicting the change of hydraulic loads on bridges: a case study in Italy with a 100-year database. In: 20th Congress of IABSE, New York City 2019: The Evolving Metropolis - Report, pp. 443–448 (2019). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074455349&partnerID=40&md5=78f7f686fc06a68bcd8820fd9431adcc

  19. Puppio, M.L., Vagaggini, E., Giresini, L., Sassu, M.: Landslide analysis of historical urban walls due to rainfalls: overview of recent collapses in Italy and the case of Volterra. J. Perform. Constr. Facil. (2021). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001647

    Article  Google Scholar 

  20. Chen, X., Guo, H., Song, E.: Analysis method for slope stability under rainfall action, Landslides Engineered Slopes (2008)

    Google Scholar 

  21. Montrasio, L., Valentino, R.: Modelling rainfall-induced shallow landslides at different scales using SLIP - part II. Procedia Eng. 158, 482–486 (2016). https://doi.org/10.1016/j.proeng.2016.08.476

    Article  Google Scholar 

  22. Yoshida, Y., Kuwano, J., Kuwano, J.: Effects of saturation on shear strength of soils. Soils Found. 31, 181–186 (1991)

    Article  Google Scholar 

  23. Montrasio, L., Valentino, R., Losi, G.L.: Rainfall-induced shallow landslides: a model for the triggering mechanism of some case studies in northern Italy. Landslides 6(3), 241–251 (2009). https://doi.org/10.1007/s10346-009-0154-7

    Article  Google Scholar 

  24. Pucci, A., Puppio, M.L., Sousa, H.S., Giresini, L., Matos, J.C., Sassu, M.: Detour-impact index method and traffic gathering algorithm for assessing alternative paths of disrupted roads. Transp. Res. Rec. (2021). https://doi.org/10.1177/03611981211031237

  25. Valentino, R., Meisina, C., Montrasio, L., Losi, G.L., Zizioli, D.: Predictive power evaluation of a physically based model for shallow landslides in the area of Oltrepò Pavese, northern Italy. Geotech. Geol. Eng. 32(4), 783–805 (2014). https://doi.org/10.1007/s10706-014-9758-3

    Article  Google Scholar 

  26. Settore Idrologico e Geologico Regione Toscana, Linee segnalatrici di probabilità pluviometrica, Pisa (2006)

    Google Scholar 

  27. Montrasio, L., Valentino, R., Terrone, A.: Application of the SLIP model. Procedia Earth Planet. Sci. 9, 206–213 (2014). https://doi.org/10.1016/j.proeps.2014.06.023

    Article  Google Scholar 

  28. Croce, P., Landi, F., Formichi, P.: Probabilistic seismic assessment of existing masonry buildings. Buildings 9(12), 237 (2019). https://doi.org/10.3390/buildings9120237

    Article  Google Scholar 

  29. Croce, P., et al.: Influence of mechanical parameters on non-linear static analysis of masonry buildings: a relevant case-study. Procedia Struct. Integrity 11, 331–338 (2018). https://doi.org/10.1016/j.prostr.2018.11.043

  30. Borselli, L.: SSAP2010 Slope Stability Analysis Program, Manuale di Riferimento (2018)

    Google Scholar 

  31. Borselli, L.: Muri a secco: verifiche di stabilità con software SSAP 5.0 e criterio GHB (GSI) per le strutture in roccia. (2020). https://doi.org/10.13140/RG.2.2.21048.90886/1

  32. Tuscany, M.V., et al.: Early Warning GBInSAR-Based Method for Early Warning GBInSAR-Based Method for Monitoring Volterra (Tuscany , Italy) City Walls, (April 2015). https://doi.org/10.1109/JSTARS.2015.2402290

  33. Franceschini, S.: Analisi critica di modelli previsionali per le frane in Emilia Romagna, University of Bologna (2012). https://doi.org/10.6092/unibo/amsdottorato/4731

  34. Losi, G.L.: Modellazione spazio-temporale dei fenomeni di soil slip : dalla scala di pendio alla scala territoriale, Università degli Studi di Parma (2012)

    Google Scholar 

  35. Sassu, M., Stochino, F., Mistretta, F.: Assessment method for combined structural and energy retrofitting in masonry buildings. Buildings 7(3), 71 (2017). https://doi.org/10.3390/buildings7030071

  36. Stochino, F., Sassu, M., Mistretta, F.: Structural and thermal retrofitting of masonry walls: the case of a school in Vittoria (RG). In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12255, pp. 309–320. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_24

    Chapter  Google Scholar 

  37. Borselli, L.: Reti in aderenza : progettazione alternativa in SSAP 5.0 per verifiche stabilità globali (LEM) (2020). https://doi.org/10.13140/RG.2.2.22444.82569

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Lucio Puppio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vagaggini, E., Ferrini, M., Sassu, M., Puppio, M.L. (2021). Modelling of Moisture Effect in Safety Evaluation of Soil-Interacting Masonry Wall Structures. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12950. Springer, Cham. https://doi.org/10.1007/978-3-030-86960-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86960-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86959-5

  • Online ISBN: 978-3-030-86960-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics