Skip to main content

Assessment of Linear and Non-linear Feature Projections for the Classification of 3-D MR Images on Cognitively Normal, Mild Cognitive Impairment and Alzheimer’s Disease

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Alzheimer’s disease (AD) is an age-related neurodegenerative disease and the most common form of dementia. It is a brain disorder that impacts the daily life of the patient due to memory loss and cognitive changes. Due to population aging and the fact that dementia incidence rising sharply at ages greater than 75, AD has become a major public health problem. Currently, hippocampal atrophy assessed on structural magnetic resonance (MR) images is the most used imaging biomarker of AD. Among many methods applied for automated classification of cognitively normal (CN), mild cognitive impairment (MCI), and AD, the linear PCA projection method, also known as eigenbrain, has shown effectiveness in AD subject prediction even with its restriction of using only linear projections. This study investigates both linear (PCA) and non-linear (kernel PCA) projection method performances to classify 3-D structural MR images on the CN, MCI, and AD classes. Support vector machines (SVMs) were trained using feature vectors with different space dimensions obtained by projecting MR study images into the previously created “eigenbrain spaces.” We tested the method using different kernel functions for both cases, the eigenbrain projections and SVM classifiers. We also conducted our analyses separately using the whole-brain and the gray-matter (GM) regions. Comparison results between PCA and kernel PCA methods showed that non-linear projections improved the classification of MR images in both class groups, particularly when processing the GM region - CN \(\times \) MCI (PCA: AUC = 0.63 versus KPCA: AUC = 0.76), MCI \(\times \) DA (PCA: AUC = 0.67 versus KPCA: AUC = 0.74), and CN \(\times \) AD (PCA: AUC = 0.86 versus KPCA: AUC = 0.89).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://adni.loni.usc.edu/.

  2. 2.

    http://projects.iw.harvard.edu/nac.

  3. 3.

    http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg.

  4. 4.

    http://fsl.fmrib.ox.ac.uk/fsl/fslwiki.

References

  1. Abdi, H., Williams, L.J.: Principal Component Analysis. Wiley Interdisc. Rev. Comput. Stat. 2(4), 433–459 (2010)

    Article  Google Scholar 

  2. Ahmed, M.R., Zhang, Y., Feng, Z., Lo, B., Inan, O.T., Liao, H.: Neuroimaging and machine learning for dementia diagnosis: recent advancements and future prospects. IEEE Rev. Biomed. Eng. 12, 19–33 (2018)

    Article  Google Scholar 

  3. Alam, S., Kwon, G., Initiative, A.D.N.: Alzheimer disease classification using kpca, lda, and multi-kernel learning svm. Int. J. Imaging Syst. Technol. 27(2), 133–143 (2017)

    Article  Google Scholar 

  4. Álvarez, I., et al.: Alzheimer’s diagnosis using eigenbrains and support vector machines. Electron. Lett. 45(7), 342–343 (2009)

    Article  Google Scholar 

  5. Amoroso, N., et al.: Alzheimer’s disease diagnosis based on the hippocampal unified multi-atlas network (human) algorithm. Biomed. Eng. Online 17(1), 1–16 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bassiony, H.S., Zickri, M.B., Metwally, H.G., Elsherif, H.A., Alghandour, S.M., Sakr, W.: Comparative histological study on the therapeutic effect of green tea and stem cells in Alzheimer’s disease complicating experimentally induced diabetes. Int. J. Stem Cells 8(2), 181–190 (2015)

    Article  Google Scholar 

  7. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  Google Scholar 

  8. Cao, P., et al.: Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures. Comput. Biol. Med. 91, 21–37 (2017)

    Article  Google Scholar 

  9. Deture, M., Dickson, D.: The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegeneration 14(32), 1–18 (2019)

    Google Scholar 

  10. Devanand, D.P., Bansal, R., Liu, J., Hao, X., Pradhaban, G., Peterson, B.S.: MRI hippocampal and entorhinal cortex mapping in predicting conversion to Alzheimer’s disease. Neuroimage 60(3), 1622–1629 (2012)

    Article  Google Scholar 

  11. Elahi, F.M., Miller, B.L.: A clinicopathological approach to the diagnosis of dementia. Nat. Rev. Neurol. 13(8), 457–476 (2017)

    Article  Google Scholar 

  12. Fawcett, T.: An introduction of ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  13. Frisoni, G.B., Fox, N.C., Jack-Jr, C.R., Scheltens, P., Thompson, P.M.: The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 6(2), 67–77 (2010)

    Article  Google Scholar 

  14. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification. Technical Report, Department of Computer Science, National Taiwan University, Taiwan (May 2016). https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

  15. Iglesias, J.E., Liu, C.Y., Thompson, P.M., Tu, Z.: Robust brain extraction across datasets and comparison with publicly available methods. IEEE Trans. Med. Imaging 30(9), 1617–1634 (2011)

    Article  Google Scholar 

  16. Jo, T., Nho, K., Saykin, A.: Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data. Front. Aging Neurosci. 11(220), 1–14 (2019)

    Google Scholar 

  17. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Phil. Trans. Royal Soc. Math. Phys. Eng. Sci. 374(2065), 1–16 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Juntu, J., Sijbers, J., Van Dyck, D., Gielen, J.: Bias Field Correction for MRI Images. In: Kurzyǹski, M., Puchała, E., Woźniak, M., żołnierek, A. (eds) Computer Recognition Systems. Advances in Soft Computing, vol. 30, pp. 543-551. Springer, Berlin (2005) https://doi.org/10.1007/3-540-32390-2_64

  19. Hett, K., Ta, V.-T., Manjón, J.V., Coupé, P.: Graph of hippocampal subfields grading for Alzheimer’s disease prediction. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 259–266. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_30

    Chapter  Google Scholar 

  20. Kanghan, O., Young-Chul, C., Ko, W., Woo-Sung, K., Il-Seok, O.: Classifcation and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning. Sci. Reports 9(18150), 1–16 (2019)

    Google Scholar 

  21. Kelleher, J.D., Mac Namee, B., D’arcy, A.: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. 1 edn. MIT Press, Cambridge (2015)

    Google Scholar 

  22. Khedher, L., Ramirez, J., Gorriz, J.M., Brahim, A., Segovia, F., Initiative, A.D.N., et al.: Early diagnosis of alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented mri images. Neurocomputing 151, 139–150 (2015)

    Article  Google Scholar 

  23. Liu, J., Li, M., Lan, W., Wu, F., Pan, Y., Wang, J.: Classification of alzheimer’s disease using whole brain hierarchical network. IEEE Trans. Comput. Biol. Bioinf. 15(2), 624–632 (2018)

    Article  Google Scholar 

  24. Liu, M., Zhang, D., Shen, D.: View-centralized multi-atlas classification for Alzheimer’s disease diagnosis. Hum. Brain Mapp. 36(5), 1847–1865 (2015)

    Article  Google Scholar 

  25. Liu, M., Zhang, J., Nie, D., Yap, P.T., Shen, D.: Anatomical landmark based deep feature representation for MR images in brain disease diagnosis. IEEE J. Biomed. Health Inf. 22(5), 1476–1485 (2018)

    Article  Google Scholar 

  26. Nell, C., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  27. Nyúl, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000)

    Article  Google Scholar 

  28. Rehman, H.Z.U., Hwang, H., Lee, S.: Conventional and deep learning methods for skull stripping in brain MRI. Appl. Sci. 10(5), 1773 (2020)

    Article  Google Scholar 

  29. Salvatore, C., Cerasa, A., Battista, P., Gilardi, M.C., Quattrone, A., Castiglioni, I.: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer’s disease: a machine learning approach. Front. Neurosci. 9, 307 (2015)

    Article  Google Scholar 

  30. Sarwinda, D., Arymurthy, A.M.: Feature selection using kernel PCA for alzheimer’s disease detection with 3D MR images of brain. In: 2013 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pp. 329–333. IEEE, Bali, IDN (September 2013)

    Google Scholar 

  31. Schölkopf, B.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  32. Schölkopf, B., Smola, A., Müller, K.-R.: Kernel principal component analysis. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0020217

    Chapter  Google Scholar 

  33. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  34. Tustison, N.J., et al.: N4itk: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  35. World Health Organization: Dementia: A public health priority. Technical Report, World Health Organization, Geneva, Switzerland (2019)

    Google Scholar 

  36. Zhang, J., Liu, M., An, L., Gao, Y., Shen, D.: Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images. IEEE J. Biomed. Health Inf. 21(5), 1607–1616 (2017)

    Article  Google Scholar 

  37. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

  38. Zhang, Y.D., Wang, S., Dong, Z.: Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. Prog. Electromagnet. Res. 144, 171–184 (2014)

    Article  Google Scholar 

  39. Zhang, Y., et al.: Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front. Comput. Neurosci. 9, 66 (2015)

    Google Scholar 

  40. Zhang, Y., Wang, S., Phillips, P., Yang, J., Yuan, T.F.: Three-dimensional eigenbrain for the detection of subjects and brain regions related with Alzheimer’s disease. J. Alzheimer’s Dis. 50(4), 1163–1179 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

Funding for ADNI can be found at http://adni.loni.usc.edu/about/#fund-container.

Funding

This study was financed by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (grant numbers 2018/08826-9 and 2018/06049-5) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo J. Ferrari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Araújo, M.R.M., Poloni, K.M., Ferrari, R.J. (2021). Assessment of Linear and Non-linear Feature Projections for the Classification of 3-D MR Images on Cognitively Normal, Mild Cognitive Impairment and Alzheimer’s Disease. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12950. Springer, Cham. https://doi.org/10.1007/978-3-030-86960-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86960-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86959-5

  • Online ISBN: 978-3-030-86960-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics