Abstract
Image classification is one of the most important applications of artificial neural networks in the field of industry and research. In most research work, when implementing ANN-based image classification models, the images used for training and testing are always represented in the RGB color space. But recent articles show that the use of certain color spaces, other than RGB, can lead to better precision in ANN-based image classification models. Thus, in this work, we present an analysis of several relevant research articles about the importance of color spaces for image classification using artificial neural networks. Thus, through the review of these articles, we will evaluate the behavior and efficiency of several ANN architectures, in different image classification contexts, and using images data sets represented in several color spaces. In the end, we not only found that there is a clear influence of the color spaces in the final accuracy of this type of tasks. But, we also found that both the creation of new special ANN architectures, and the creation of new color spaces formed from the combination of others, can lead to an increase in the performance of ANN-based image classification models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akmeliawati, R., Ooi, M.P.L., Kuang, Y.C.: Real-time Malaysian sign language translation using colour segmentation and neural network. In: 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007, pp. 1–6. IEEE (2007)
Basheer, I.A., Hajmeer, M.: Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43(1), 3–31 (2000)
Berg, A., Deng, J., Fei-Fei, L.: Large scale visual recognition challenge (ILSVRC) 2010. http://www.image-net.org/challenges/LSVRC 3 (2010)
Buhrmester, V., Münch, D., Bulatov, D., Arens, M.: Evaluating the impact of color information in deep neural networks. In: Morales, A., Fierrez, J., Sánchez, J.S., Ribeiro, B. (eds.) IbPRIA 2019. LNCS, vol. 11867, pp. 302–316. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31332-6_27
Castro, W., Oblitas, J., De-La-Torre, M., Cotrina, C., Bazán, K., Avila-George, H.: Classification of cape gooseberry fruit according to its level of ripeness using machine learning techniques and different color spaces. IEEE Access 7, 27389–27400 (2019)
Diaz-Cely, J., Arce-Lopera, C., Mena, J.C., Quintero, L.: The effect of color channel representations on the transferability of convolutional neural networks. In: Arai, K., Kapoor, S. (eds.) CVC 2019. AISC, vol. 943, pp. 27–38. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-17795-9_3
El-Bendary, N., El Hariri, E., Hassanien, A.E., Badr, A.: Using machine learning techniques for evaluating tomato ripeness. Expert Syst. Appl. 42(4), 1892–1905 (2015)
Gowda, S.N., Yuan, C.: ColorNet: investigating the importance of color spaces for image classification. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11364, pp. 581–596. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20870-7_36
Graupe, D.: Principles of artificial neural networks, vol. 7. World Scientific (2013)
Hassoun, M.H., et al.: Fundamentals of Artificial Neural Networks. MIT Press, Cambridge (1995)
Hill, B., Roger, T., Vorhagen, F.W.: Comparative analysis of the quantization of color spaces on the basis of the CIELAB color-difference formula. ACM Trans. Graph. (TOG) 16(2), 109–154 (1997)
Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks: a tutorial. Computer 29(3), 31–44 (1996)
Khojasteh, P., Aliahmad, B., Kumar, D.K.: A novel color space of fundus images for automatic exudates detection. Biomed. Signal Process. Control 49, 240–249 (2019)
Kim, J., Kim, B., Savarese, S.: Comparing image classification methods: K-nearest-neighbor and support-vector-machines. In: Proceedings of the 6th WSEAS International Conference on Computer Engineering and Applications, and Proceedings of the 2012 American Conference on Applied Mathematics, vol. 1001, pp. 48109–2122 (2012)
Kumar, A., et al.: Deep feature learning for histopathological image classification of canine mammary tumors and human breast cancer. Inf. Sci. 508, 405–421 (2020)
Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28(5), 823–870 (2007)
Mahy, M., Van Eycken, L., Oosterlinck, A.: Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV. Color Res. Appl. 19(2), 105–121 (1994)
Matuska, S., Hudec, R., Kamencay, P., Benco, M., Zachariasova, M.: Classification of wild animals based on SVM and local descriptors. AASRI Procedia 9, 25–30 (2014)
McLaughlin, B.P.: Colors and color spaces. Proc. Twentieth World Congress Philos. 5, 83–89 (2000)
Nath, S.S., Mishra, G., Kar, J., Chakraborty, S., Dey, N.: A survey of image classification methods and techniques. In: 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp. 554–557. IEEE (2014)
Paschos, G.: Perceptually uniform color spaces for color texture analysis: an empirical evaluation. IEEE Trans. Image Process. 10(6), 932–937 (2001)
Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017)
Quraishi, M.I., Choudhury, J.P., De, M.: Image recognition and processing using artificial neural network. In: 2012 1st International Conference on Recent Advances in Information Technology (RAIT), pp. 95–100. IEEE (2012)
Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29(9), 2352–2449 (2017)
Sachin, R., Sowmya, V., Govind, D., Soman, K.P.: Dependency of various color and intensity planes on CNN based image classification. In: Thampi, S.M., Krishnan, S., Corchado Rodriguez, J.M., Das, S., Wozniak, M., Al-Jumeily, D. (eds.) SIRS 2017. AISC, vol. 678, pp. 167–177. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67934-1_15
Sahin, Y., Duman, E.: Detecting credit card fraud by ANN and logistic regression. In: 2011 International Symposium on Innovations in Intelligent Systems and Applications, pp. 315–319. IEEE (2011)
Süsstrunk, S., Buckley, R., Swen, S.: Standard RGB color spaces. In: Color and Imaging Conference, vol. 1999, pp. 127–134. Society for Imaging Science and Technology (1999)
Wu, J., Qiu, S., Zeng, R., Senhadji, L., Shu, H.: PCANet for color image classification in various color spaces. In: Sun, X., Chao, H.-C., You, X., Bertino, E. (eds.) ICCCS 2017. LNCS, vol. 10603, pp. 494–505. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68542-7_42
Yegnanarayana, B.: Artificial neural networks. PHI Learning Pvt, Ltd (2009)
Yu, Y., Choi, T.M., Hui, C.L.: An intelligent fast sales forecasting model for fashion products. Expert Syst. Appl. 38(6), 7373–7379 (2011)
Zeng, H., Hudson, K.R.: Method and system for management of color through conversion between color spaces. US Patent 7,054,035, 30 May 2006
Zuo, H., Hu, W., Wu, O.: Patch-based skin color detection and its application to pornography image filtering. In: Proceedings of the 19th International Conference on World Wide Web, pp. 1227–1228 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Velastegui, R., Yang, L., Han, D. (2021). The Importance of Color Spaces for Image Classification Using Artificial Neural Networks: A Review. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12950. Springer, Cham. https://doi.org/10.1007/978-3-030-86960-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-86960-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86959-5
Online ISBN: 978-3-030-86960-1
eBook Packages: Computer ScienceComputer Science (R0)