Skip to main content

On Controlling Skyline Query Results: What Does Soft Computing Bring?

  • Conference paper
  • First Online:
Flexible Query Answering Systems (FQAS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12871))

Included in the following conference series:

  • 605 Accesses

Abstract

Querying databases to search for the best objects matching user’s preferences is a fundamental problem in multi-criteria databases. The skyline queries are an important tool for solving such problems. Based on the concept of Pareto dominance, the skyline process extracts the most interesting (not dominated in Pareto sense) objects from a set of data. However, this process may often lead to the two scenarios: (i) a small number of skyline objects are retrieved which could be insufficient to serve the decision makers’needs ; (ii) a huge number of skyline objects are returned which are less informative for the decision makers. In this paper, we discuss and show how Soft Computing, and more particularly fuzzy set theory, can contribute to solve the two above problems. First, a relaxation mechanism to enlarge the skyline set is presented. It relies on a particular fuzzy preference relation, called “much preferred”. Second, an efficient approach to refine huge skyline and reduce its size, using some advanced techniques borrowed from fuzzy formal concepts analysis, is provided. The approaches proposed are user-dependent and allow controlling the skyline results in a flexible and rational way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \( \mathcal {M} \)uch \( \mathcal {P} \)referred \( \mathcal {R} \)elation for \( \mathcal {R} \)elaxation.

References

  1. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, pp. 421–430 (2001)

    Google Scholar 

  2. Yiu, M.L., Mamoulis, N.: Efficient processing of top-k dominating queries on multi-dimensional data. In: Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB), pp. 483–494. Austria, 23–27 September 2007

    Google Scholar 

  3. Khalefa, M.E., Mokbel, M.F., Levandoski, J.J.: Skyline query processing for incomplete data. In: Proceedings of the 24th International Conference on Data Engineering, ICDE 2008, pp. 556–565 (2008)

    Google Scholar 

  4. Siddique, M.A., Tian, H., Qaosar, M., Morimoto, Y.: MapReduce algorithm for variants of skyline queries: skyband and dominating queries. Algorithms 12(8), 166–186 (2019)

    Article  Google Scholar 

  5. Hadjali, A., Pivert, O., Prade, H.: Possibilistic contextual skylines with incomplete preferences. In: Second International Conference of Soft Computing and Pattern Recognition, (SoCPaR), pp. 57–62. Paris, France, 7–10 December 2010

    Google Scholar 

  6. Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 15–26. Austria, 23–27 September 2007

    Google Scholar 

  7. Lee, J., Hwang, S.: Scalable skyline computation using a balanced pivot selection technique. Inf. Syst. 39, 1–21 (2014)

    Article  Google Scholar 

  8. Gulzar, Y., Alwan, A.A., Abdullah, R.M., Xin, Q., Swidan, M.B.: SCSA: evaluating skyline queries in incomplete data. Appl. Intell. 49(5), 1636–1657 (2018). https://doi.org/10.1007/s10489-018-1356-2

    Article  Google Scholar 

  9. Ghosh, P., Sen, S., Cortesi, A.: Skyline computation over multiple points and dimensions. Innov. Syst. Softw. Eng. 17(2), 141–156 (2021). https://doi.org/10.1007/s11334-020-00376-1

    Article  Google Scholar 

  10. Belkasmi, D., Hadjali, A., Azzoune, H.: On fuzzy approaches for enlarging skyline query results. Appl. Soft Comput. 74, 51–65 (2019)

    Article  Google Scholar 

  11. Hadjali, A., Pivert, O., Prade, H.: On different types of fuzzy skylines. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS (LNAI), vol. 6804, pp. 581–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21916-0_62

    Chapter  Google Scholar 

  12. Goncalves, M., Tineo, L.: Fuzzy dominance skyline queries. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 469–478. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74469-6_46

    Chapter  Google Scholar 

  13. Jin, W., Han, J., Ester, M.: Mining thick skylines over large databases. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 255–266. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30116-5_25

    Chapter  Google Scholar 

  14. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. In: Proceedings of the International Conference on Management of Data (ACM SIGMOD), pp. 467–478. San Diego, California, USA, 9–12 June 2003

    Google Scholar 

  15. Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: On high dimensional skylines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Boehm, K., Kemper, A., Grust, T., Boehm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 478–495. Springer, Heidelberg (2006). https://doi.org/10.1007/11687238_30

    Chapter  Google Scholar 

  16. Koltun, V., Papadimitriou, C.H.: Approximately dominating representatives. In: Proceedings of the 10th International Conference on Database Theory (ICDT), pp. 204–214. Edinburgh, UK, 5–7 January 2005

    Google Scholar 

  17. Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K., Zhang, Z.: Finding k-dominant skylines in high dimensional space. In: Proceedings of the International Conference on Management of Data (ACM SIGMOD), pp. 503–514. Illinois, USA, 27–29 June 2006

    Google Scholar 

  18. Balke, W., Güntzer, U., Lofi, C.: User interaction support for incremental refinement of preference-based queries. In: Proceedings of the First International Conference on Research Challenges in Information Science (RCIS), pp. 209–220. Ouarzazate, Morocco, 23–26 April 2007

    Google Scholar 

  19. Lee, J., You, G., Hwang, S.: Telescope: zooming to interesting skylines. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 539–550. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71703-4_46

    Chapter  Google Scholar 

  20. Sarma, A.D., Lall, A., Nanongkai, D., Lipton, R.J., Xu, J.: Representative skylines using threshold-based preference distributions. In: Proceedings of the 27th International Conference on Data Engineering, (ICDE), pp. 387–398. Hannover, Germany, 11–16 April 2011

    Google Scholar 

  21. Haddache, M., Belkasmi, D., Hadjali, A., Azzoune, H.: An outranking-based approach for skyline refinement. In 8th IEEE International Conference on Intelligent Systems, IS 2016, pp. 333–344. Sofia, Bulgaria, 4–6 September 2016

    Google Scholar 

  22. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS (LNAI), vol. 5548, pp. 314–339. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01815-2_23

    Chapter  Google Scholar 

  23. Belohlávek, R.: Fuzzy galois connections. Math. Log. Q. 45, 497–504 (1999)

    Article  MathSciNet  Google Scholar 

  24. Belohlávek, R., De Baets, B., Outrata, J., Vychodil, V.: Computing the lattice of all fixpoints of a fuzzy closure operator. IEEE Trans. Fuzzy Syst. 18(3), 546–557 (2010)

    Article  Google Scholar 

  25. Djouadi, Y., Prade, H.: Possibility-theoretic extension of derivation operators in formal concept analysis over fuzzy lattices. FO DM 10(4), 287–309 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Haddache, M., Hadjali, A., Azzoune, H.: Skyline refinement exploiting fuzzy formal concept analysis. Int. J. Intell. Comput. Cybern. 14(3), 333–362 (2021)

    Article  Google Scholar 

  27. Zhang, N., Li, C., Hassan, N., Rajasekaran, S., Das, G.: On skyline groups. IEEE Trans. Knowl. Data Eng. 26, 942–956 (2014)

    Article  Google Scholar 

  28. Nadouri, S., Hadjali, A., Sahnoun, Z.: Group skyline computation: an overview. In: Proceedings of the 36th Computer Workshop of Organizations and Information Systems and Business Intelligence Decision Making, Big Data and Data Science, INFORSID, Nantes, France, 28–31 May 2018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allel Hadjali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hadjali, A. (2021). On Controlling Skyline Query Results: What Does Soft Computing Bring?. In: Andreasen, T., De Tré, G., Kacprzyk, J., Legind Larsen, H., Bordogna, G., Zadrożny, S. (eds) Flexible Query Answering Systems. FQAS 2021. Lecture Notes in Computer Science(), vol 12871. Springer, Cham. https://doi.org/10.1007/978-3-030-86967-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86967-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86966-3

  • Online ISBN: 978-3-030-86967-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics