Skip to main content

Predicting Physiological Variables of Players that Make a Winning Football Team: A Machine Learning Approach

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

As football gained popularity and importance in the modern world, it been under greater scrutiny, so the industry must have better control of the training sessions, and most importantly, the football games and their outcomes. With the purpose of identify the physiological variables of the players that most contribute to winning a football match, a study based on machine learning algorithms was conducted on a dataset of the players GPS positions during the football matches of a team from the 2nd division of the Portuguese championship. The findings reveal that the most important players’ physiological variables for predicting a win are Player Load /min, Distance m/min, Distance 0.3 m/s, Acceleration 0.2 m/s with an accuracy of 79%, using the XGBoost algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oliver, J.L., Ayala, F., de Ste Croix, M.B.A., Lloyd, R.S., Myer, G.D., Read, P.J.: Using machine learning to improve our understanding of injury risk and prediction in elite male youth football players. J. Sci. Med. Sport 23(11), 1044–1048 (2020). https://doi.org/10.1016/j.jsams.2020.04.021

  2. Catapult Innovations, “Playertek” (2021). https://www.playertek.com/gb/. Accessed 12 Apr 2021

  3. Jaggia, S., Kelly, A., Lertwachara, K., Chen, L.: Applying the CRISP-DM framework for teaching business analytics. Decis. Sci. J. Innov. Educ. 18(4), 612–634 (2020). https://doi.org/10.1111/dsji.12222

    Article  Google Scholar 

  4. Yang, Y.: Evaluation model of soccer training technology based on artificial intelligence. J. Phys. Conf. Ser. 1648, 042085 (2020)

    Article  Google Scholar 

  5. Maanijou, R., Mirroshandel, S.A.: Introducing an expert system for prediction of soccer player ranking using ensemble learning. Neural Comput. Appl. 31(12), 9157–9174 (2019). https://doi.org/10.1007/s00521-019-04036-9

    Article  Google Scholar 

  6. Kusmakar, S., Shelyag, S., Zhu, Y., Dwyer, D., Gastin, P., Angelova, M.: Machine learning enabled team performance analysis in the dynamical environment of soccer. IEEE Access 8, 90266–90279 (2020). https://doi.org/10.1109/ACCESS.2020.2992025

    Article  Google Scholar 

  7. Baboota, R., Kaur, H.: Predictive analysis and modelling football results using machine learning approach for English Premier League. Int. J. Forecast. 35(2), 741–755 (2019). https://doi.org/10.1016/j.ijforecast.2018.01.003

    Article  Google Scholar 

  8. Žemgulys, J., Raudonis, V., Maskeliūnas, R., Damaševičius, R.: Recognition of basketball referee signals from real-time videos. J. Ambient. Intell. Humaniz. Comput. 11(3), 979–991 (2019). https://doi.org/10.1007/s12652-019-01209-1

    Article  Google Scholar 

  9. Knauf, K., Memmert, D., Brefeld, U.: Spatio-temporal convolution kernels. Mach. Learn. 102(2), 247–273 (2015). https://doi.org/10.1007/s10994-015-5520-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Herold, M., Goes, F., Nopp, S., Bauer, P., Thompson, C., Meyer, T.: Machine learning in men’s professional football: current applications and future directions for improving attacking play. Int. J. Sports Sci. Coach. 14(6), 798–817 (2019). https://doi.org/10.1177/1747954119879350

    Article  Google Scholar 

  11. García-Aliaga, A., Marquina, M., Coterón, J., Rodríguez-González, A., Luengo-Sánchez, S.: In-game behaviour analysis of football players using machine learning techniques based on player statistics. Int. J. Sports Sci. Coach. (2020). https://doi.org/10.1177/1747954120959762

    Article  Google Scholar 

  12. Behravan, I., Razavi, S.M.: A novel machine learning method for estimating football players’ value in the transfer market. Soft. Comput. 25(3), 2499–2511 (2020). https://doi.org/10.1007/s00500-020-05319-3

    Article  Google Scholar 

  13. Miguel, M., Oliveira, R., Loureiro, N., García-Rubio, J., Ibáñez, S.J.: Load measures in training/match monitoring in soccer: a systematic review. Int. J. Environ. Res. Public Health 18(5), 2721 (2021)

    Article  Google Scholar 

  14. Laureano, R.M.S., Caetano, N., Cortez, P.: Previsão de tempos de internamento num hospital português: Aplicação da metodologia CRISP-DM. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao (13), 83–98 (2014). https://doi.org/10.4304/risti.13.83-98

  15. Morais, A., Peixoto, H., Coimbra, C., Abelha, A., Machado, J.: Predicting the need of neonatal resuscitation using data mining. Procedia Comput. Sci. 113, 571–576 (2017). https://doi.org/10.1016/j.procs.2017.08.287

    Article  Google Scholar 

  16. Soto, P.R., Nieto, D.C., Suarez, A.D., Ortega, J.P.: Player load and metabolic power dynamics as load quantifiers in soccer. J. Hum. Kinetics 69, 259 (2019). https://doi.org/10.2478/hukin-2018-0072

    Article  Google Scholar 

  17. Arndt, C., Brefeld, U.: Predicting the future performance of soccer players. Stat. Anal. Data Min. 9(5), 373–382 (2016). https://doi.org/10.1002/sam.11321

    Article  MathSciNet  MATH  Google Scholar 

  18. Altavilla, G., Riela, L., di Tore, A.P., Raiola, G.: The physical effort required from professional football players in different playing positions. J. Phys. Educ. Sport 17(3), 2007–2012 (2017). https://doi.org/10.7752/jpes.2017.03200

    Article  Google Scholar 

  19. Almulla, J., Alam, T.: Machine learning models reveal key performance metrics of football players to win matches in qatar stars league. IEEE Access 8(December), 213695–213705 (2020). https://doi.org/10.1109/ACCESS.2020.3038601

    Article  Google Scholar 

  20. Baptista, I., Johansen, D., Seabra, A., Pettersen, S.A.: Position specific player load during matchplay in a professional football club. PLoS ONE 13(5), 1–11 (2018). https://doi.org/10.1371/journal.pone.0198115

    Article  Google Scholar 

  21. Borghi, S., Colombo, D., la Torre, A., Banfi, G., Bonato, M., Vitale, J.A.: Differences in GPS variables according to playing formations and playing positions in U19 male soccer players. Res. Sports Med. 29(3), 225–239 (2020). https://doi.org/10.1080/15438627.2020.1815201

  22. Rathi, K., Somani, P., Koul, A.V., Manu, K.S.: Applications of artificial intelligence in the game of football: the global perspective. Res. World 11(2), 18–29 (2020). https://doi.org/10.18843/rwjasc/v11i2/03

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cortez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cortez, A., Trigo, A., Loureiro, N. (2021). Predicting Physiological Variables of Players that Make a Winning Football Team: A Machine Learning Approach. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12951. Springer, Cham. https://doi.org/10.1007/978-3-030-86970-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86970-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86969-4

  • Online ISBN: 978-3-030-86970-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics