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Abstract. Wind power is seeing a strong growth around the world. At the same 
time, shrinking profit margins in the energy markets let wind farm managers ex-
plore options for cost reductions in the turbine operation and maintenance. Sen-
sor-based condition monitoring facilitates remote diagnostics of turbine subsys-
tems, enabling faster responses when unforeseen maintenance is required. Con-
dition monitoring with data from the turbines’ supervisory control and data ac-
quisition (SCADA) systems was proposed and SCADA-based fault detection and 
diagnosis approaches introduced based on single-task normal operation models 
of turbine state variables. As the number of SCADA channels has grown strongly, 
thousands of independent single-target models are in place today for monitoring 
a single turbine. Multi-target learning was recently proposed to limit the number 
of models. This study applied multi-target neural networks to the task of early 
fault detection in drive-train components. The accuracy and delay of detecting 
gear bearing faults were compared to state-of-the-art single-target approaches. 
We found that multi-target multi-layer perceptrons (MLPs) detected faults at 
least as early and in many cases earlier than single-target MLPs. The multi-target 
MLPs could detect faults up to several days earlier than the single-target models. 
This can deliver a significant advantage in the planning and performance of 
maintenance work. At the same time, the multi-target MLPs achieved the same 
level of prediction stability. 

Keywords: Condition monitoring, Fault detection, Multi-target neural net-
works, Normal behaviour models, Wind turbines 

 

1 Introduction 

The global wind power capacity is growing strongly with a total installed volume of 
651 GW in 2019 and an increase of 76 GW in 2020 [1]. The newly installed wind 
turbines are getting larger and increasingly more complex. At the same time, the oper-
ating cost of wind farms still makes up a major fraction, approximately 30%, of their 
lifetime cost [2]. Major faults can result in days and even weeks of downtime [3,4]. 
Therefore, they can substantially reduce the owner’s return on investment and pose a 
considerable economic risk. As a result, many operators want to closely monitor the 
health state of their turbines in order to be alerted as early as possible of any developing 
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technical problems and to prevent any major damage and downtime. To this end, an 
automated condition monitoring of wind turbine subsystems provides an essential pre-
requisite for informed operational decision making and fast responses in case of un-
foreseen maintenance needs [5-6].  
Data-driven automated monitoring methods have been proposed, amongst others, based 
on sensor data logged in the turbines’ supervisory control and data acquisition 
(SCADA) systems [7-10]. Temperature can be an important indicator of different types 
of developing machine problems such as mechanical faults which can give rise to ex-
cessive friction generating heat. Therefore, a major focus of the proposed SCADA-
based condition monitoring approaches is the temperature-based detection of develop-
ing faults in the wind turbine subsystems based on models of the turbine’s normal op-
eration behaviour in the absence of operational faults [11-22]. The present study focus-
ses on the gear bearing temperature as an indicator of developing gearbox faults. 
The goal of this study is to assess the potential of multi-target regression models for the 
automated SCADA-based fault detection. Specifically, this work has investigated and 
compared the delays in detecting gear bearing faults using single-target versus multi-
target models of the turbines’ normal operation. Moreover, the stability of the alarm 
signal after the first detection of a developing fault is being assessed. 
The remainder of this paper is structured as follows. Section 2 provides a brief overview 
of previous work in this field. Section 3 describes the data sources and the training and 
testing of the multi- and the single target regression models. The analysis and results 
are discussed in section 4. Conclusions and possible future work are proposed in section 
5. 
 

2 Related Work 

Normal behaviour modelling has become an established technique in wind turbine con-
dition monitoring and fault detection [7-8]. Normal behaviour models characterize the 
machine state during normal operation in the absence of faults. They have been in use 
for monitoring the health state of turbine subsystems such as the gearbox [23,24] and 
the generator [25]. Normal behaviour models have also successfully been employed for 
monitoring the active power generation [26-27,15]. We refer to [8] for a comprehensive 
review of SCADA-based condition monitoring and normal behaviour models of wind 
turbines.  
Multi-target machine learning models [28-32] are regression or classification models 
which predict multiple target variables simultaneously. It has been demonstrated in 
other fields that multi-target models hold the potential to enable an increased prediction 
accuracy compared to single-target models and are less susceptible to overfitting the 
training data [29, 33-34]. In the field of wind turbine monitoring, we have recently 
introduced multi-target regression models for simultaneously monitoring the growing 
number of SCADA channels, and we demonstrated that they can reduce the effort of 
SCADA-based normal behaviour monitoring in wind turbine condition monitoring 
[35].  
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3 Data and Methods 

Condition monitoring data from the SCADA system of three commercial onshore tur-
bines was analyzed in this work. The turbines are variable-speed three-bladed horizon-
tal axis systems with pitch regulation from an onshore wind farm. Their rated power 
was 3.3 MW, and they operated with a 3-stage planetary/helical gearbox. The turbines’ 
rotors were 112 m in diameter with the hub located at 84 m height above ground. The 
turbines’ cut-in, rated and cut-out wind speeds were specified at 3m/s, 13 m/s and 25 
m/s, respectively.  
In this study, fourteen months of ten-minute mean SCADA signals served to train and 
test the models specified below. The data were anonymized to maintain the privacy of 
the wind farm operator. We report the results for one of the wind turbines. It was ran-
domly selected and the results were not affected by the choice of turbine. We focus on 
monitoring the gear bearing condition based on the temperature of the gear bearing. 
The temperature is an important SCADA-based indicator of incipient fault processes in 
gearbox components [8,19, 20, 22-23]. In the present study, the condition of the gear 
bearing has been monitored based on two normal operation models of the bearing tem-
perature. Wind speed vwind, wind direction αwind and air temperature Tair constitute the 
models’ input variables which were provided as ten-minute averages of measurements 
from nacelle-mounted anemometers and thermometers. The input variables were se-
lected due to their relevance for explaining and predicting the behaviour of the target 
variables.  
A multi-target fully connected feedforward neural network was designed to predict 
the gear bearing temperature Tgear along with the hydraulic oil temperature Toil and the 
transformer winding temperature Ttr from the input variables at high accuracy, Tgear, 
Toil, Ttr ~ vwind + αwind + Tair. The single-target model estimates the gear bearing tem-
perature only, Tgear ~ vwind + αwind + Tair. In addition, the two fully connected feedfor-
ward neural networks (multi-layer perceptrons, MLP) were trained and tested to as-
sess the normal operating behaviour of the gear bearing based on the provided 
SCADA data. The model architectures were developed to obtain a high predictive ac-
curacy on the training set without overfitting the training data. In this process, the 
number of neurons and weights to be trained was increased only if this resulted in 
higher predictive accuracy. The resulting model architectures are detailed in Table 1. 

In this work, our goal is to systematically assess the ability of multi-target neural 
networks to detect developing faults that result in rising component temperatures. We 
demonstrate this approach by the example of the gear bearing temperature. However, 
it is equally applicable to faults in other subsystems and other components that result 
in elevated SCADA-logged temperatures. 

A major challenge in data-driven fault detection and isolation is the scarcity of ac-
tually observed fault instances. We addressed this point by combining gear bearing 
temperature measurements with a multitude of synthetic temperature trends in order 
to mimic the bearing temperature rise induced by a developing fault. To this end, a 
synthetic temperature trend was overlaid on the normalized gear bearing temperature 
signal. One of ten different linear temperature trends was added to the normalized 
bearing temperature. Temperature trends with integer slopes in the range of 1 to 10 
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were used to simulate slowly and fast evolving fault processes. The temperature trend 
onset time was randomly sampled from a two-week time window in months 12 and 
13 of the 14-months observation period. Fifty different onset times have been ran-
domly sampled from the two-week window for each of the ten temperature slopes. 
This ensured that the results did not depend on the choice of the trend onset time. 

 

Table 1. The architectures of the multi-layer perceptrons. 

Model Architecture 
Multi-layer perceptron (MLP) with 
three target variables 
 

Two dense hidden layers with 4 neurons in the 
first layer and 19 neurons in the second layer, 
batch normalization, and a 3-neuron output 
layer. Dropout was applied at a rate of 10% to 
avoid overfitting.  
 

Single-target multi-layer perceptron 
 

Three dense hidden layers with 4 neurons 
each in the first and second layers and 5 neu-
rons in the third layer, batch normalization 
and a single node in the output layer. Drop-
out rate of 10%. 

 

4 Results and Discussion 

Two common alarm criteria [7] were applied using the residuals of the gear bearing 
temperature. The residuals were computed as the difference of the observed tempera-
ture of the gear bearing and its temperature predicted by the normal operation behaviour 
models of Table 1. Figure 1 illustrates the residuals and alarms. According to the first 
criterion, an alarm was raised when the 99.9th percentile of the residuals distribution 
was exceeded for more than 8 hours in the past 24 hours. On the other hand, the second 
criterion triggered an alarm whenever the rolling mean of the residuals computed over 
the past 8 hours exceeded the 99.9th percentile of the residuals distribution. The fault 
detection capabilities of the multi-target and single-target normal behaviour models 
were compared with regard to the delay of detecting the induced faults. Moreover, the 
stability of the triggered alarms was assessed following the detection. The stability is 
computed as the fraction of true positive alarms after the first detection. 
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Figure 1. Normalized gear bearing temperature and residuals. An alarm was raised when the 
99.9th percentile of the residuals distribution was exceeded for more than 8 hours during the past 
24 hours (alarm criterion 1). The dashed line indicates the first alarm event. The temperature 
units are dimensionless due to normalization. 

 
Figure 2 shows the resulting alarms for a fault instance with fast rising bearing tem-

perature and a randomly sampled onset time. The false positive detection rate is zero 
for both criteria but there are false negatives after the first alarm detection by both alarm 
criteria. Following the first detection, the alarms are initially unstable and stabilize 
within three to seven days after the first alarm was triggered, as shown in Figure 2. We 
found that the alarm signal stabilized faster in the case of the first criterion, while the 
second criterion generated a less stable signal that required a week to stabilize in the 
case shown in Figure 2. This alarm instability was caused by the signal-to-noise ratio 
which was relatively small immediately after the first detection and increased over time 
along with the overlaid increasing temperature. 
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Figure 2. A fast evolving gear bearing fault with trend slope 10 is shown at one of the 50 ran-
domly sampled onset times. The gear bearing temperature starts to rise near time step 44000 in 
this case. The alarm criteria are compared based on the multi-target and the single-target normal 
behaviour models of the gear bearing temperature. Alarm criterion 2 detects the trend earlier but 
is less stable than alarm criterion 1. 

 
The detection delays and detection stabilities are reported in Figures 3-4 in terms of the 
means and the standard deviations computed over the 50 randomly sampled onset 
times. The fault detection delays could be quantified precisely as the faults were in-
duced at known times in terms of temperature trend onset times. 

We found that the multi-target model could detect the induced faults at least as fast 
as the single-target model. In the majority of the fault instances in this case study, the 
multi-target MLP even enabled a somewhat faster detection of the gear bearing fault 
than the single-target network. As shown in Figures 3 and 4, the multi-target MLP fa-
cilitated shorter detection delays for both slow and fast trends and regardless of the 
chosen alarm criterion. 
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Figure 3. Fault detection delay and the detection stability are reported based on multi-target 
normal behavior MLP of the bearing temperature. The stability is the fraction of true positives 
from the first alarm until the end of the observation period, i.e. till the end of month 14. Mean 
and standard deviation of the detection delay and stability are reported for ten gear temperature 
trends. For each trend, the mean and standard deviations of detection delay and stability were 
computed from 50 randomly sampled temperature trend onset times in months 12 and 13. Mean 
detection delay and mean detection stability were computed based on randomized temperature 
trend onsets times and for 10 trend progression velocities, assuming a linear temperature trend. 
Fifty randomly selected onset times were used to simulate the bearing temperature increase. 
 
This study demonstrates that multi-target models can describe the temperature behav-
iour of wind turbine gear bearings in normal operation at least as accurately as corre-
sponding single-target models. In the present work, the multi-target MLP provided a 
test-set accuracy of 0.49 for predictions of the gear bearing temperature, while the test-
set accuracy of the single-target MLP was 0.51 in normalized temperature. As the 
multi-target MLP produced smaller prediction residuals in many cases, temperature 
trends became visible earlier and thus the detection delay was shorter. In addition, a 
paired sample t-test was performed to test the null hypothesis that there are no system-
atic differences in the detection delays based on the normal behaviour descriptions of 
the multi-target MLP versus the single-target MLP. The null hypothesis was clearly 
rejected (p < 10-21) in favor of the alternative hypothesis of shorter detection delays 
based on the multi-target MLP. The test result was confirmed for both alarm criteria. 

 

 
Figure 4. Fault detection delay and stability as in Figure 3 but based on the single-target normal 
operation MLP of the gear bearing temperature. 
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Similarly, a paired sample t-test was performed to test for systematic differences of 
the detection stability. This provided a more ambiguous picture. Based on alarm crite-
rion 2, the multi-target MLP enabled a more stable alarm after the first detection 
(p<10-14). However, no systematic difference in the detection stability was found in 
the case of alarm criterion 1 (p=0.22) Comparing both alarm criteria, it is also found 
that the second criterion detects faults significantly earlier than the first criterion, but 
this comes at the cost of significantly reduced detection stabilities (Figures 3-4). 

In summary, this study demonstrated that multi-target MLPs can detect faults as fast 
as and in some cases even earlier than single-target MLPs, and at the same time achieve 
the same level of detection stability. Comparing Figures 3 and 4, the detection speed-
up observed in this study ranged from several hours to several days. The earlier detec-
tion enabled by the proposed multi-target approach can deliver a significant advantage 
in the planning and performance of maintenance activities. If wind farm operators learn 
about a developing fault hours or up to several days ahead, they have more time to 
respond and schedule inspections and adjustment work that may prevent more serious 
damage and component replacement. 

5 Conclusions 

This study investigated how multi-target neural networks compare to single-target mod-
els with regard to the speed and accuracy of detecting incipient faults in wind turbines 
from SCADA data. We analyzed the delays in detecting gear bearing faults in onshore 
wind turbines. Gear bearing faults can result in anomalous temperature increases that 
are detectable from SCADA data. In this work, synthetic temperature trends were over-
laid on the gear bearing temperature SCADA signals in order to facilitate a systematic 
analysis despite the scarcity of fault observations. We compared the detection delay and 
the detection stability of the alarm signals among the multi- and single-target models 
based on different alarm criteria. In this study, we found that multi-target neural net-
works can meet and even go below the detection delays achieved with single-target 
MLPs of the turbine normal operation. At the same time, the multi-target MLPs 
achieved the same level of prediction stability. We demonstrated that the detection of 
temperature-related faults could be accelerated by up to several days compared to the 
state-of-the-art fault detection with single-target models. With regard to future studies, 
we propose to also investigate the potential of multi-target models for normal behaviour 
modelling and fault detection tasks based on high-frequency data, in particular from 
vibration measurements in the drive train, which did not form part of this paper. 
 

Acknowledgments: The author thanks Bernhard Brodbeck, Janine Maron, Dimitrios Anag-
nostos of WinJi AG, Switzerland, and Kaan Duran of Energie Baden-Wuerttemberg EnBW, Ger-
many, for valuable discussions. 

 
 



9 

References  

1. Global Wind Energy Council GWEC, 2019, Global Wind Report 2019, accessible: 
https://gwec.net/global-wind-report-2019 (5 June 2021). 

2. International Renewable Energy Agency, 2019, Renewable power generation costs in 
2019, accessible: https://www.irena.org (5 June 2021). 

3. Faulstich S., B. Hahn, P. Tavner, 2011, Wind turbine downtime and its importance for 
offshore deployment, 2011, doi: 10.1002/we.421. 

4. Pfaffel S., S. Faulstich, K. Rohrig, 2017, Performance and reliability of wind turbines: 
A review, Energies, doi: 10.3390/en10111904. 

5. Garcia Marquez, F., A. Tobias, J. Pinar Perez, M. Papaelias, 2012, Condition monitor-
ing of wind turbines: Techniques and methods, Renewable Energy 46, doi: 
10.1016/j.renene.2012.03.003. 

6. Fischer, K., D. Coronado, 2015, Condition monitoring of wind turbines: State of the 
art, user experience and recommendations, VGB PowerTech 7, 51-56. 

7. Stetco, A., F. Dinmohammadi, X. Zhao, V. Robu, D. Flynn, M. Barnes, J. Keane, G. 
Nenadic, 2019, Machine learning methods for wind turbine condition monitoring: A 
review, Renewable Energy, 133, 620–635, doi: 10.1016/j.renene.2018.10.047. 

8. Tautz-Weinert, J., S. Watson, 2017, Using SCADA data for wind turbine condition 
monitoring - A review. IET Renewable Power Generation, 11(4), 382–394, doi: 
10.1049/iet-rpg.2016.0248. 

9. Helbing, G., M. Ritter, 2018, Deep Learning for fault detection in wind turbines, Re-
newable and Sustainable Energy Reviews, 98, doi: 10.1016/j.rser.2018.09.012. 

10. Qiao, W., D. Lu, 2015, A Survey on Wind Turbine Condition Monitoring and Fault 
Diagnosis—Part II: Signals and Signal Processing Methods, IEEE Transactions on 
Industrial Electronics, 62, doi: 10.1109/TIE.2015.2422394. 

11. Zaher, A., S. McArthur, D. Infield, Y. Patel, 2009, Online wind turbine fault detection 
through automated SCADA data analysis, Wind Energy 12, 574–593, doi: 
10.1002/we.319. 

12. Kusiak, A., A. Verma, 2012, Analyzing bearing faults in wind turbines: A data-mining 
approach, Renewable Energy, 48, doi: 10.1016/j.renene.2012.04.020. 

13. Salameh, J., S. Cauet, E. Etien, A. Sakout, L. Rambault, 2018, Gearbox condition mon-
itoring in wind turbines: A review, Mechanical Systems and Signal Processing 111, 
doi: 10.1016/j.ymssp.2018.03.052. 

14. McKinnon, C., A. Turnbull, S. Koukoura, J. Carroll, A. McDonald, 2020, Effect of 
time history on normal behaviour modelling using SCADA data to predict wind turbine 
failures, Energies, doi: 10.3390/en13184745. 

15. Meyer, A., B. Brodbeck, 2020, Data-driven Performance Fault Detection in 
Commercial Wind Turbines, Proceedings of the 5th European Conference of the 
Prognostics and Health Management Society (PHME20), ISBN 978-1-93-626332-5. 

16. Liu, Y., Z. Wu, X. Wang, 2020, Research on fault diagnosis of wind turbine based on 
SCADA data, IEEE Access, doi: 10.1109/ACCESS.2020.3029435. 

17. Zhang, S., Z. Lang, 2020, SCADA-data-based wind turbine fault detection: A dynamic 
model sensor method, Control Engineering Practice, doi: 
10.1016/j.conengprac.2020.104546. 

18. Liu, X., J. Du, Z. Ye, 2021, A Condition Monitoring and Fault Isolation System for 
Wind Turbine based on SCADA Data, IEEE Transactions on Industrial Informatics, 
doi: 10.1109/TII.2021.3075239. 



10 

19. Yang, Y., A. Liu, J. Wang, 2021, Fault early warning of wind turbine gearbox based 
on multi-input support vector regression and improved ant lion optimization, Wind 
Energy, doi: 10.1002/we.2604. 

20. Astolfi, D., L. Scappaticci, L. Terzi, 2017, Fault Diagnosis of Wind Turbine Gearboxes 
Through Temperature and Vibration Data,  International Journal of Renewable Energy 
Research. 

21. Leahy, K., R. Hu, D. O'Sullivan, 2018, Diagnosing and predicting wind turbine faults 
from scada data using support vector machines, International Journal of Prognostics 
and Health Management. 

22. Zeng, X., M. Yang, Y. Bo, 2020, Gearbox oil temperature anomaly detection for wind 
turbine based on sparse Bayesian probability estimation, International Journal of 
Electrical Power and Energy Systems. 

23. Wang, Y., D. Infield, 2013, Supervisory control and data acquisition data-based non-
linear state estimation technique for wind turbine gearbox condition monitoring, IET 
Renewable Power Generation 7, 10.1049/iet-rpg.2012.0215. 

24. Wang, L., Z. Zhang, H. Long, J. Xu, R. Liu, 2017, Wind turbine gearbox failure iden-
tification with deep neural networks, IEEE Transactions on Industrial Informatics, 13, 
doi: 10.1109/TII.2016.2607179. 

25. Guo, P., D. Infield, 2012, Wind turbine generator condition monitoring using temper-
ature trend analysis, doi: 10.1109/TSTE.2011.2163430. 

26. Kusiak, A., H. Zheng, Z. Song, 2009, Online monitoring of power curves, Renew. En-
ergy 34, doi: 10.1016/j.renene.2008.10.022. 

27. Schlechtingen, M., F. Santos, S. Achiche, 2013, Using data-mining approaches for 
wind turbine power curve monitoring: a comparative study, IEEE Trans. Sustain. En-
ergy 4, doi: 10.1109/TSTE.2013.2241797. 

28. Caruana, R, 1997, Multitask Learning, Machine Learning 28, doi: 
10.1023/A:1007379606734. 

29. Piccart, B., 2012, Algorithms for multi-target learning, Doctoral thesis, KU Leuven. 
30. Borchani, H., G. Varando, C. Bielza, P. Larranaga, 2015, A survey on multi-output 

regression, A survey on multi‐output regression, Wiley Interdisciplinary Reviews: 
Data Mining and knowledge discovery, doi: 10.1002/widm.1157. 

31. Waegeman W., K. Dembczynski E. Hüllermeier, 2018, Multitarget prediction: a uni-
fying view on problems and methods, Data Mining and Knowledge Discovery, doi: 
10.1007/s10618-018-0595-5. 

32. Xu, D., Y. Shi, I. Tsang, Y. Ong, C. Gong, X. Shen, 2020, Survey on Multi-Output 
Learning, IEEE Transactions on Neural Networks and Learning Systems, 31, 2409-
2429, doi: 10.1109/TNNLS.2019.2945133. 

33. Kocev, D., S. Dzeroski, M. White, G. Newell, P. Griffioen, 2009, Using single- and 
multi-target regression trees and ensembles to model a compound index of vegetation 
condition, Ecological Modelling, 220(8):1159–1168.  

34. Segal, M., Y. Xiao, 2011, Multivariate random forests, Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery, doi: 10.1002/widm.12. 

35. Maron, J., D. Anagnostos, B. Brodbeck, A. Meyer, 2021, Gear bearing fault detection 
using multi-target neural networks, Wind Energy Science Conference WESC 2021, 
Hanover, Germany, May 2021. 


