Skip to main content

Deep and Ensemble Learning Based Land Use and Land Cover Classification

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12951))

Included in the following conference series:

  • 1414 Accesses

Abstract

Monitoring of Land use and Land cover (LULC) changes is a highly encumbering task for humans. Therefore, machine learning based classification systems can help to deal with this challenge. In this context, this study evaluates and compares the performance of two Single Learning (SL) techniques and one Ensemble Learning (EL) technique. All the empirical evaluations were over the open source LULC dataset proposed by the German Center for Artificial Intelligence (EuroSAT), and used the performance criteria -accuracy, precision, recall, F1 score and change in accuracy for the EL classifiers-. We firstly evaluate the performance of SL techniques: Building and optimizing a Convolutional Neural Network architecture, implementing Transfer learning, and training Machine learning algorithms on visual features extracted by Deep Feature Extractors. Second, we assess EL techniques and compare them with SL classifiers. Finally, we compare the capability of EL and hyperparameter tuning to improve the performance of the Deep Learning models we built. These experiments showed that Transfer learning is the SL technique that achieves the highest accuracy and that EL can indeed outperform the SL classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.dfki.de/en/web.

References

  1. Alam, A., Bhat, M.S., Maheen, M.: Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal 85(6), 1529–1543 (2019). https://doi.org/10.1007/s10708-019-10037-x

    Article  Google Scholar 

  2. Athiwaratkun, B., Kang, K.: Feature representation in convolutional neural networks CoRR abs/1507.02313 (2015). http://arxiv.org/abs/1507.02313

  3. Aung, S.W.Y., Khaing, S.S., Aung, S.T.: Multi-label land cover indices classification of satellite images using deep learning. In: Zin, T.T., Lin, J.-W. (eds.) ICBDL 2018. AISC, vol. 744, pp. 94–103. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0869-7_11

    Chapter  Google Scholar 

  4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Bernasconi, E., Pugliese, F., Zardetto, D., Scannapieco, M.: Satellite-net: automatic extraction of land cover indicators from satellite imagery by deep learning (2019)

    Google Scholar 

  6. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/cjlin/libsvm

  7. Chollet, F.: Complete guide to transfer learning fine-tuning in keras (2020)

    Google Scholar 

  8. Ghimire, B., Rogan, J., Rodriguez-Galiano, V., Panday, P., Neeti, N.: An evaluation of bagging, boosting, and random forests for land-cover classification in cape cod, Massachusetts, USA. GIScience Remote Sens. 49, 623–643 (2012). https://doi.org/10.2747/1548-1603.49.5.623

    Article  Google Scholar 

  9. Helber, P., Bischke, B., Dengel, A., Borth, D.: Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12(7), 2217–2226 (2019)

    Article  Google Scholar 

  10. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected Convolutional networks. CoRR abs/1608.06993 (2016). http://arxiv.org/abs/1608.06993

  11. Hussain, M., Bird, J.J., Faria, D.R.: A study on cnn transfer learning for image classification. In: Lotfi, A., Bouchachia, H., Gegov, A., Langensiepen, C., McGinnity, M. (eds.) UKCI 2018. AISC, vol. 840, pp. 191–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-97982-3_16

    Chapter  Google Scholar 

  12. Jansen, L., Gregorio, A.: Land Cover Classification System (LCCS): Classification Concepts and User Manual (2000)

    Google Scholar 

  13. Jozdani, S.E., Johnson, B.A., Chen, D.: Comparing deep neural networks, ensemble classifiers, and support vector machine algorithms for object-based urban land use/land cover classification. Remote Sens. 11(14), 1713 (2019). https://doi.org/10.3390/rs11141713

    Article  Google Scholar 

  14. Kalliatakis, G.: Keras VGG16 places365 github repository (2017). https://github.com/GKalliatakis/Keras-VGG16-places365

  15. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. Neural Inf. Process. Syst. 25 (2012). https://doi.org/10.1145/3065386

  16. Lo, C.: Applied remote sensing. Geocarto Int. 1(4), 60 (1986). https://doi.org/10.1080/10106048609354071

    Article  Google Scholar 

  17. Mohd Aszemi, N., Panneer Selvam, D.D.D.: Hyperparameter optimization in convolutional neural network using genetic algorithms. Int. J. Adv. Comput. Sci. Appl. 10, 269–278 (2019). https://doi.org/10.14569/IJACSA.2019.0100638

  18. O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., et al.: Keras Tuner (2019). https://github.com/keras-team/keras-tuner

  19. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. CoRRabs/1511.08458 (2015). http://arxiv.org/abs/1511.08458

  20. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Ratajczak, R., Crispim-Junior, C.F., Faure, E., Fervers, B., Tougne, L.: Automatic land cover reconstruction from historical aerial images: an evaluation of features extraction and classification algorithms. IEEE Trans. Image Process. 28(7), 3357–3371 (2019)

    Article  MathSciNet  Google Scholar 

  22. Smith, G.: Remote sensing of land use and land cover: principles and applications, by C. P. Giri, Boca Raton. Int. J. Remote Sens. 35(6), 2392–2393 (2014). https://doi.org/10.1080/01431161.2014.891560

  23. Sokal, R.R.: classification: purposes, principles, progress, prospects. Science 185(4157), 1115–1123 (1974). https://doi.org/10.1126/science.185.4157.1115

    Article  Google Scholar 

  24. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision (2016). https://doi.org/10.1109/CVPR.2016.308

  25. Talukdar, S., Singha, P., Mahato, S., Shahfahad, S.P., Liou, Y.-A., Rahman, A.: Land-use land-cover classification by machine learning classifiers for satellite observations—a review. Remote Sens. 12(7), 1135 (2020). https://doi.org/10.3390/rs12071135

    Article  Google Scholar 

  26. Tong, X.Y., et al.: Land-cover classification with high-resolution remote sensing images using transferable deep models (2018)

    Google Scholar 

  27. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992). https://doi.org/10.1016/S0893-6080(05)80023-1

    Article  Google Scholar 

  28. Cheng, X., Namjoshi, N., Rodriguez, R.: Temporal analysis of regional sustainability using CNNs and satellite data (2018)

    Google Scholar 

  29. Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification, GIS 2010, pp. 270–279. Association for Computing Machinery, New York (2010). https://doi.org/10.1145/1869790.1869829

  30. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: A 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2018). https://doi.org/10.1109/TPAMI.2017.2723009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Idri .

Editor information

Editors and Affiliations

Appendix A - Comparison of the Performance of Our Models on Moroccan LULC Images

Appendix A - Comparison of the Performance of Our Models on Moroccan LULC Images

We aim to use the models we built during this work to construct a Moroccan LULC dataset. Indeed, we will choose one of these models to be used as an annotator of Moroccan satellite images. Therefore, we decided to test these classifiers’ ability to generalize to images of Moroccan regions. In this appendix we present the classification results of the four classifiers (i.e. LULC-Net, VGG16, VGG16 + LR and DLEnsemble1). The nine images we tested our models on are of the city of Casablanca where Industrial, Residential, Sea & Lake and highway classes are present, and of the North of Morocco where classes such as Forest, Pasture, River and Annual Corp are present.

  • LULC-Net

    figure a
  • VGG16

    figure b
  • VGG16 + LR

    figure c
  • DLEnsemble1

    figure d

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benbriqa, H., Abnane, I., Idri, A., Tabiti, K. (2021). Deep and Ensemble Learning Based Land Use and Land Cover Classification. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12951. Springer, Cham. https://doi.org/10.1007/978-3-030-86970-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86970-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86969-4

  • Online ISBN: 978-3-030-86970-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics