Abstract
Cultural heritage risk assessment is an important task. Usually cultural heritage inside the consolidated city is more protected than cultural heritage spread over the territory. In this paper a method is proposed that integrates different technologies and platforms: from Google Earth Engine (GEE) and machine learning to desktop GIS and spatial analysis. The aim is to map the different vulnerability and hazard layers that constitute the cultural heritage risk map of the rural area in the Matera Municipality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Serra, M., D’Agostino, S.: Archeologia Preventiva. Agenzia Magna Grecia, Albanella (SA) (2010)
Cruden, D.M., Varnes, D.J.: Landslide types and processes. In: Turner, A.K., Shuster, R.L. (eds.) Landslides: Investigation and Mitigation, pp. 36–75. National Academies Press, Washington DC (1996)
Biscione, M., Danese, M., Masini, N.: A framework for cultural heritage management and research: the cancellara case study. J. Maps 14, 576–582 (2018)
Danese, M., Gioia, D., Biscione, M., Masini, N.: Spatial methods for archaeological flood risk: the case study of the neolithic sites in the Apulia Region (Southern Italy). In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 423–439. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_29
Danese, M., Masini, N., Biscione, M., Lasaponara, R.: Predictive modeling for preventive archaeology: overview and case study. Cent. Eur. J. Geosci. 6(1), 42–55 (2014). https://doi.org/10.2478/s13533-012-0160-5
Yan, L., et al.: Towards an operative predictive model for the songshan area during the yangshao period. ISPRS Int. J. Geo-Inf. 10, 217 (2021)
https://blog.google/outreach-initiatives/sustainability/introducing-google-earth-engine/
Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., Brisco, B.: Google Earth Engine for geo-big data applications: a meta-analysis and systematic review. ISPRS J. Photogramm. Remote. Sens. 164, 152–170 (2020)
Moore, R.T., Hansen, M.C.: Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis. In: AGU Fall Meeting Abstracts (2011)
Ravanelli, R., et al.: Monitoring the impact of land cover change on surface urban heat island through google earth engine: proposal of a global methodology, first applications and problems. Remote Sens. 10, 1488 (2018)
Mutanga, O., Kumar, L.: Google Earth Engine applications. Remote Sens. 11 (2019)
Patel, N.N., et al.: Multitemporal settlement and population mapping from Landsat using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 35, 199–208 (2015)
Huntington, J.L., et al.: Climate engine: cloud computing and visualization of climate and remote sensing data for advanced natural resource monitoring and process understanding. Bull. Am. Meteor. Soc. 98, 2397–2410 (2017)
Agapiou, A.: Remote sensing heritage in a petabyte-scale: satellite data and heritage Earth Engine© applications. Int. J. Digit. Earth 10, 85–102 (2017)
Kleinberg, E.M.: On the algorithmic implementation of stochastic discrimination. IEEE Trans. Pattern Anal. Mach. Intell. 22, 473–490 (2000)
Kleinberg, E.M.: An overtraining-resistant stochastic modeling method for pattern recognition. Ann. Stat. 24, 2319–2349 (1996)
Belgiu, M., Drăguţ, L.: Random forest in remote sensing: a review of applications and future directions. ISPRS J. Photogramm. Remote. Sens. 114, 24–31 (2016)
Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., Homayouni, S.: Support vector machine versus random forest for remote sensing image classification: a meta-analysis and systematic review. IEEE J. Selected Topics Appl. Earth Obs. Remote Sens. 13, 6308–6325 (2020)
Cao, G.Y., Chen, G., Pang, L.H., Zheng, X.Y., Nilsson, S.: Urban growth in China: past, prospect, and its impacts. Popul. Environ. 33, 137–160 (2012)
Demers, M.: GIS modeling in raster (2001)
Tomlin, C.D.: GIS and Cartographic Modeling. Esri Press, Redlands, California (2013)
Beneduce, P., Festa, V., Francioso, R., Schiattarella, M., Tropeano, M.: Conflicting drainage patterns in the Matera Horst Area, Southern Italy. Phys. Chem. Earth 29, 717–724 (2004)
Tropeano, M., Sabato, L., Pieri, P.: Filling and cannibalization of a foredeep: the Bradanic Trough Southern Italy. Geol. Soc. Spec. Publ. 191, 55–79 (2002)
Gioia, D., Sabato, L., Spalluto, L., Tropeano, M.: Fluvial landforms in relation to the geological setting in the “Murge Basse” karst of Apulia (Bari Metropolitan Area, Southern Italy). J. Maps 7, 148–155 (2011)
Teofilo, G., Gioia, D., Spalluto, L.: Integrated geomorphological and geospatial analysis for mapping fluvial landforms in Murge basse karst of Apulia (Southern Italy). Geosciences (Switzerland) 9, 418 (2019)
Gioia, D., Schiattarella, M., Giano, S.: Right-angle pattern of minor fluvial networks from the ionian terraced belt, Southern Italy: passive structural control or foreland bending? Geosciences 8, 331 (2018)
Pérez-Hernández, E., Peña-Alonso, C., Hernández-Calvento, L.: Assessing lost cultural heritage. a case study of the eastern coast of Las Palmas de Gran Canaria city (Spain). L. Use Policy 96, 104697 (2020)
de Noronha Vaz, E., Cabral, P., Caetano, M., Nijkamp, P.: Urban heritage endangerment at the interface of future cities and past heritage: a spatial vulnerability assessment. Serie Research Memoranda 0036, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics (2011)
Fry, G.L.A., Skar, B., Jerpåsen, G., Bakkestuen, V., Erikstad, L.: Locating archaeological sites in the landscape: a hierarchical approach based on landscape indicators. Landsc. Urban Plan. 67, 97–107 (2004)
Agapiou, A., et al.: Impact of Urban sprawl to cultural heritage monuments: the case study of paphos area in Cyprus. J. Cult. Herit. 16, 671–680 (2015)
Congalton, R.: Putting the Map Back in Map Accuracy Assessment, pp. 1–11 (2004)
Lazzari, M., Gioia, D., Anzidei, B.: Landslide inventory of the Basilicata region (Southern Italy). J. Maps 14, 348–356 (2018)
Mitasova, H., Hofierka, J., Zlocha, M., Iverson, L.R.: Modelling topographic potential for erosion and deposition using GIS. Int. J. Geogr. Inf. Syst. 10, 629–641 (1996)
Renard, K.G.: Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). United States Government Printing (1997)
Capolongo, D., Diodato, N., Mannaerts, C.M., Piccarreta, M., Strobl, R.O.: Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (Southern Italy). J. Hydrol. 356, 119–130 (2008)
Büttner, G.: CORINE land cover and land cover change products. In: Manakos, I., Braun, M. (eds.) Land Use and Land Cover Mapping in Europe. RSDIP, vol. 18, pp. 55–74. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-7969-3_5
Renard, K.G., Foster, G.R., Weesies, G.A., Porter, J.P.: RUSLE: revised universal soil loss equation. J. Soil Water Conserv. 46, 30–33 (1991)
Acknowledgement
Authors want to thank Guido Ceccarini of the European Commission Joint Research Centre, who freely shared the script which GEE elaboration for urban growth analysis are inspired.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Danese, M., Gioia, D., Biscione, M. (2021). Integrated Methods for Cultural Heritage Risk Assessment: Google Earth Engine, Spatial Analysis, Machine Learning. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12951. Springer, Cham. https://doi.org/10.1007/978-3-030-86970-0_42
Download citation
DOI: https://doi.org/10.1007/978-3-030-86970-0_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86969-4
Online ISBN: 978-3-030-86970-0
eBook Packages: Computer ScienceComputer Science (R0)