Skip to main content

Testing and Comparative Analysis of the F-BFT-based DLT Solution

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Consensus algorithm is a crucial part of a blockchain system. In particular, in any blockchain-based Distributed Ledger Technology (DLT) solution the consensus algorithm plays the key role in maintaining consistency of databases. The choice of consensus type during design of the distributed system will inevitably and significantly affect such characteristics as throughput and network load what in turn can impose serious restrictions on functionality or applicability of the whole system. In this research paper we overview the most commonly used algorithms and approaches, the highest attention is paid to those based on the solution of the Byzantine Fault Tolerance problem (BFT). One of the best-known algorithms of that type is the Practical Byzantine Fault Tolerance (PBFT) which has become the basis and the benchmark for a plenty of different BFT algorithms. The focus of this paper is sharpened on a particular PBFT modification known as the Federalized BFT. The aim of this study is to investigate a particular F-BFT-based DLT solution, to compare it with the other systems of that type and to determine areas of its applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeffery, K., et al.: Challenges emerging from future cloud application scenarios. Procedia Comput. Sci. 68, 227–237 (2015). https://doi.org/10.1016/j.procs.2015.09.238

    Article  Google Scholar 

  2. Koulouzis, S., Martin, P., Zhou, H., et al.: Time-critical data management in clouds: challenges and a dynamic real-time infrastructure planner (DRIP) solution. Concurrency Comput. Pract. Exper. 32(16), e5269 (2019). https://doi.org/10.1002/cpe.5269

  3. Ayed, A.: A conceptual secure blockchain-based electronic voting system. Int. J. Netw. Secur. Appl. (IJNSA) 9(3), 1–9 (2017). https://doi.org/10.5121/ijnsa.2017.9301

  4. Jakobsson, M., Juels, A.: Proofs of work and bread pudding protocols (extended abstract). In: Preneel, B. (ed.) Secure Information Networks. ITIFIP, vol. 23, pp. 258–272. Springer, Boston (1999). https://doi.org/10.1007/978-0-387-35568-9_18

    Chapter  Google Scholar 

  5. Li, W., Andreina, S., Bohli, J.-M., Karame, G.: Securing proof-of-stake blockchain protocols. In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H., Herrera-Joancomartí, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol. 10436, pp. 297–315. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67816-0_17

    Chapter  Google Scholar 

  6. Nxt technical documentation: https://nxtdocs.jelurida.com Accessed 11 May 2021

  7. Bogdanov, A., Degtyarev, A., Uteshev, A., Shchegoleva, N., Khvatov, V., Zvyagintsev, M.: A DLT based innovative investment platform. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12251, pp. 72–86. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58808-3_7

    Chapter  Google Scholar 

  8. Bogdanov, A., Uteshev, A., Khvatov, V.: Error detection in the decentralized voting protocol. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11620, pp. 485–494. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24296-1_38

    Chapter  Google Scholar 

  9. Lamport, L., Shostak, R., Pease, M.: The Byzantine general problem. ACM Trans. Programm. Lang. Syst. 4, 382–401 (1982)

    Article  Google Scholar 

  10. Wang, Q., Yu, J., Peng, Z., Bui, V.C., Chen, S., Ding, Y., Xiang, Y.: Security analysis on dBFT protocol of NEO. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 20–31. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_2

    Chapter  Google Scholar 

  11. Malkhi, D., Nayak, K., Ren, L.: Flexible Byzantine fault tolerance. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 1041–1053 (2019). https://doi.org/10.1145/3319535.3354225

  12. Aublin, P., Mokhtar, S., Quéma, V.: RBFT: redundant byzantine fault tolerance. In: Proceedings - International Conference on Distributed Computing Systems, pp. 297–306 (2013). https://doi.org/10.1109/ICDCS.2013.53

  13. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proceedings of the third symposium on Operating systems design and implementation (OSDI 1999), pp. 173–186. USENIX Association, USA (1999)

    Google Scholar 

  14. Overview of Docker Engine. https://docs.docker.com/engine/ Accessed 15 Mar 2021

  15. Overview of Docker Compose. https://docs.docker.com/compose/ Accessed 15 Mar 2021

  16. BGX/DGT repository. https://github.com/DGT-Network/DGT-Kawartha Accessed 17 Mar 2021

  17. Hyperledger Sawtooth repository. https://github.com/hyperledger/sawtooth-core Accessed 15 Mar 2021

  18. Introduction to Sawtooth PBFT. https://sawtooth.hyperledger.org/docs/pbft/releases/ latest/introduction-to-sawtooth-pbft.html Accessed 15 Mar 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda Shchegoleva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bogdanov, A. et al. (2021). Testing and Comparative Analysis of the F-BFT-based DLT Solution. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12952. Springer, Cham. https://doi.org/10.1007/978-3-030-86973-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86973-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86972-4

  • Online ISBN: 978-3-030-86973-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics