Skip to main content

Measuring Plantar Temperature Changes in Thermal Images Using Basic Statistical Descriptors

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

One of the principal complications of patients that suffer from Diabetes Mellitus (DM) and that can lead to ulceration is the Diabetic foot. As tissue inflammation causes temperature variation, several studies show that thermography can be used to detect complications in diabetic foot and help predicting the risk of ulceration. It is known that, although healthy individuals present characteristic plantar temperature variation patterns, the same does not happen with diabetic patients, for which a particular pattern can not be found; thus, making the measurement of the temperature variation more difficult. Given that, it is important to research in this field in order to obtain methods that can detect atypical variations of the temperature in the sole of the foot. With this in mind, the objective of this work is to present a methodology to analyze the distribution of temperature in thermograms of the foot’s plant and classify it as belonging to a DM individual with risk of ulceration or a healthy individual. After foot partitioning with a clustering algorithm, basic statistical descriptors are computed for each cluster. A binary classifier to predict the risk of ulceration in the diabetic foot was evaluated with the different descriptors; both a quantitative temperature index and a classification threshold are calculated for each descriptor. To evaluate the performance of the classifier, experiments were conducted using a public dataset (containing 45 thermograms of healthy individuals and 122 images of DM ones); the following metrics were obtained: Accuracy = 78%, AUC = 86% and F-measure = 84%, with the best descriptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diabetes, (n.d.): https://www.who.int/en/news-room/fact-sheets/detail/diabetes. Accessed 4 Apr 2021

  2. Leung, P.: Diabetic foot ulcers - a comprehensive review. Surgeon. (2007). https://doi.org/10.1016/S1479-666X(07)80007-2

    Article  Google Scholar 

  3. Glaudemans, A.W.J.M., Uçkay, I., Lipsky, B.A.: Challenges in diagnosing infection in the diabetic foot. Diabet. Med. 32, 748–759 (2015). https://doi.org/10.1111/dme.12750

    Article  Google Scholar 

  4. Hernandez-Contreras, D., Peregrina-Barreto, H., Rangel-Magdaleno, J., Gonzalez-Bernal, J.A., Altamirano-Robles, L.: A quantitative index for classification of plantar thermal changes in the diabetic foot. Infrared Phys. Technol. 81, 242–249 (2017). https://doi.org/10.1016/j.infrared.2017.01.010

    Article  Google Scholar 

  5. Nagase, T., et al.: Variations of plantar thermographic patterns in normal controls and non-ulcer diabetic patients: Novel classification using angiosome concept. J. Plast. Reconstr. Aesthetic Surg. 64, 860–866 (2011). https://doi.org/10.1016/j.bjps.2010.12.003

    Article  Google Scholar 

  6. Mori, T., et al.: Morphological pattern classification system for plantar thermography of patients with diabetes. J. Diabetes Sci. Technol. 7, 1102–1112 (2013). https://doi.org/10.1177/193229681300700502

    Article  Google Scholar 

  7. Pereira, C.B., Yu, X., Dahlmanns, S., Blazek, V., Leonhardt, S., Teichmann, D.: Infrared thermography. In: Abreu de Souza, M., Remigio Gamba, H., Pedrini, H. (eds.) Multi-Modality Imaging, pp. 1–30. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98974-7_1

    Chapter  Google Scholar 

  8. Frykberg, R.G., et al.: Diabetic foot disorders: a clinical practice guideline (2006 revision). J. Foot Ankle Surg. 45 (2006). https://doi.org/10.1016/S1067-2516(07)60001-5

  9. Ring, F.: The Herschel heritage to medical thermography. J. Imaging. 2 (2016). https://doi.org/10.3390/jimaging2020013

  10. Hernandez-Contreras, D., Peregrina-Barreto, H., Rangel-Magdaleno, J., Gonzalez-Bernal, J.: Narrative review: diabetic foot and infrared thermography. Infrared Phys. Technol. 78, 105–117 (2016). https://doi.org/10.1016/j.infrared.2016.07.013

    Article  Google Scholar 

  11. Adam, M., Ng, E.Y.K., Tan, J.H., Heng, M.L., Tong, J.W.K., Acharya, U.R.: Computer aided diagnosis of diabetic foot using infrared thermography: a review. Comput. Biol. Med. 91, 326–336 (2017). https://doi.org/10.1016/j.compbiomed.2017.10.030

    Article  Google Scholar 

  12. Hernandez-Contreras, D.A., Peregrina-Barreto, H., Rangel-Magdaleno, J.D.J., Renero-Carrillo, F.J.: Plantar thermogram database for the study of diabetic foot complications. IEEE Access. 7, 161296–161307 (2019). https://doi.org/10.1109/ACCESS.2019.2951356

    Article  Google Scholar 

  13. Macdonald, A., et al.: Thermal symmetry of healthy feet: a precursor to a thermal study of diabetic feet prior to skin breakdown. Physiol. Meas. 38, 33–44 (2017). https://doi.org/10.1088/1361-6579/38/1/33

    Article  Google Scholar 

  14. Macdonald, A., et al.: Between visit variability of thermal imaging of feet in people attending podiatric clinics with diabetic neuropathy at high risk of developing foot ulcers, Physiol. Meas. 40 (2019). https://doi.org/10.1088/1361-6579/ab36d7

  15. Peregrina-Barreto, H., Morales-Hernandez, L.A., Rangel-Magdaleno, J.J., Avina-Cervantes, J.G., Ramirez-Cortes, J.M., Morales-Caporal, R.: Quantitative estimation of temperature variations in plantar angiosomes: a study case for diabetic foot. Comput. Math. Methods Med. 2014 (2014). https://doi.org/10.1155/2014/585306

  16. Peregrina-Barreto, H., Morales-Hernandez, L.A., Rangel-Magdaleno, J.J., Vazquez-Rodriguez, P.D.: Thermal image processing for quantitative determination of temperature variations in plantar angiosomes. Conf. Rec. - IEEE Instrum. Meas. Technol. Conf. 816–820 (2013). https://doi.org/10.1109/I2MTC.2013.6555528

  17. Filipe, V., Teixeira, P., Teixeira, A.: A clustering approach for prediction of diabetic foot using thermal images. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12251, pp. 620–631. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58808-3_45

    Chapter  Google Scholar 

  18. Omran, M.G.H., Engelbrecht, A.P., Salman, A.: An overview of clustering methods. Intell. Data Anal. 11, 583–605 (2007). https://doi.org/10.3233/ida-2007-11602

    Article  Google Scholar 

  19. Ben Ayed, A., Ben Halima, M., Alimi, A.M.: Adaptive fuzzy exponent cluster ensemble system based feature selection and spectral clustering. IEEE Int. Conf. Fuzzy Syst. (2017). https://doi.org/10.1109/FUZZ-IEEE.2017.8015721.

  20. (PDF) Survey on clustering methods : Towards fuzzy clustering for big data, (n.d.). https://www.researchgate.net/publication/280730634_Survey_on_clustering_methods_Towards_fuzzy_clustering_for_big_data. Accessed 24 Mar 2021

  21. Berkhin, P.: A survey of clustering data mining techniques. In: Group. Multidimens. Data Recent Adv. Clust., pp. 25–71. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-28349-8_2

  22. Dhanachandra, N., Manglem, K., Chanu, Y.J.: Image segmentation using k-means clustering algorithm and subtractive clustering algorithm. Procedia Comput. Sci. 54, 764–771 (2015). https://doi.org/10.1016/j.procs.2015.06.090

    Article  Google Scholar 

  23. Tremblay, N., Loukas, A.: Approximating spectral clustering via sampling: a review. In: Ros, F., Guillaume, S. (eds.) Sampling Techniques for Supervised or Unsupervised Tasks. USL, pp. 129–183. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29349-9_5

    Chapter  MATH  Google Scholar 

  24. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging. 15 (2015). https://doi.org/10.1186/s12880-015-0068-x

  25. Unal, I.: Defining an optimal cut-point value in ROC analysis: an alternative approach. Comput. Math. Methods Med. 2017 (2017). https://doi.org/10.1155/2017/3762651

  26. Hajian-Tilaki, K.: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp. J. Intern. Med. 4, 627–635 (2013)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the project “WalkingPAD - Patient education on a quantified supervised home-based exercise therapy to improve walking ability in patients with peripheral arterial disease and intermittent claudication” (PTDC/MEC-VAS/31161/2017) funded by Fundação para a Ciência e a Tecnologia (FCT), Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vítor Filipe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Filipe, V., Teixeira, P., Teixeira, A. (2021). Measuring Plantar Temperature Changes in Thermal Images Using Basic Statistical Descriptors. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12953. Springer, Cham. https://doi.org/10.1007/978-3-030-86976-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86976-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86975-5

  • Online ISBN: 978-3-030-86976-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics