Skip to main content

The CH\(_2\)CH\(_2\) + OH Gas Phase Reaction: Formaldehyde and Acetaldehyde Formation Routes

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

In this work we assess the viability of the CH\(_2\)CH\(_2\)+OH gas phase exothermic route as a mechanism for the formation of formaldehyde and acetaldehyde in the Interstellar Medium. The relevant features of the potential energy surface of the system have been characterized by accurate quantum chemical calculations, identifying the available pathways as a sequence of minimum and transition state structures, with no entry barriers. Preliminary theoretical kinetics calculations have been performed at the low temperature range characteristic of the spatial environments where such neutral-neutral reactions could be of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caselli, P., Ceccarelli, C.: Our astrochemical heritage. Astron. Astrophys. Rev. 20, 56 (2012)

    Google Scholar 

  2. Aikawa, Y., et al.: AKARI observations of ice absorption bands towards edge-on young stellar objects. A&A 538, A57 (2012)

    Google Scholar 

  3. Aikawa, Y., Nomura, H.: Physical and chemical structure of protoplanetary disks with grain growth. Astrophys. J. 642(2), 1152–1162 (2006)

    Google Scholar 

  4. Aikawa, Y., Umebayashi, T., Nakano, T., Miyama, S.M.: Evolution of molecular abundances in protoplanetary disks with accretion flow. Astrophys. J. 519(2), 705–725 (1999)

    Google Scholar 

  5. Snyder, L.E., Buhl, D., Zuckerman, B., Palmer, P.: Microwave detection of interstellar formaldehyde. Phys. Rev. Lett. 22, 679 (1969)

    Google Scholar 

  6. Sutton, E., Peng, R., Danchi, W., Jaminet, P., Sandell, G., Russell, A.: The distribution of molecules in the core of OMC-1. Astrophys. J. Suppl. Ser. 97, 455–496 (1995)

    Google Scholar 

  7. Ceccarelli, C., Loinard, L., Castets, A., Tielens, A., Caux, E.: The hot core of the solar-type protostar IRAS 16293-2422: H\(_{2}\)CO emission. Astron. Astrophys. 357, L9–L12 (2000)

    Google Scholar 

  8. Maret, S., et al.: The H2CO abundance in the inner warm regions of low mass protostellar envelopes. Astron. Astrophys. 416, 577–594 (2004)

    Google Scholar 

  9. Young, K.E., Lee, J.E., Evans, N.J., II., Goldsmith, P.F., Doty, S.D.: Probing pre-protostellar cores with formaldehyde. Astrophys. J. 614, 252 (2004)

    Google Scholar 

  10. Araya, E., Hofner, P., Goss, W., Linz, H., Kurtz, S., Olmi, L.: A search for formaldehyde 6 cm emission toward young stellar objects. II. H2CO and H110\(\alpha \) observations. Astrophys. J. Suppl. Ser. 170, 152 (2007)

    Google Scholar 

  11. Guzmán, V., et al.: The IRAM-30 m line survey of the horsehead PDR-IV. comparative chemistry of H2CO and CH3OH. Astron. Astrophys. 560, A73 (2013)

    Google Scholar 

  12. Guzmán, V., Pety, J., Goicoechea, J., Gerin, M., Roueff, E.: H2CO in the horsehead PDR: photo-desorption of dust grain ice mantles. Astron. Astrophys. 534, A49 (2011)

    Google Scholar 

  13. Pizzarello, S., Weber, A.L.: Prebiotic amino acids as asymmetric catalysts. Science 303, 1151 (2004)

    Google Scholar 

  14. Córdova, A., Ibrahem, I., Casas, J., Sundén, H., Engqvist, M., Reyes, E.: Amino acid catalyzed neogenesis of carbohydrates: a plausible ancient transformation. Chem.-A Eur. J. 11, 4772–4784 (2005)

    Google Scholar 

  15. Gordon, M., Snyder, L., Chaisson, E.J.: Molecules in the galactic environment. Phys. Today 28, 74 (1975)

    Google Scholar 

  16. Fourikis, N., Sinclair, M., Robinson, B., Godfrey, P., Brown, R.: Microwave emission of the 211–212 rotational transition in interstellar acetaldehyde. Aust. J. Phys. 27, 425–430 (1974)

    Google Scholar 

  17. Blake, G.A., Sutton, E., Masson, C., Phillips, T.: Molecular abundances in OMC-1: the chemical composition of interstellar molecular clouds and the influence of massive star formation. Astrophys. J. 315, 621–645 (1987)

    Google Scholar 

  18. Cazaux, S., et al.: The hot core around the low-mass protostar IRAS 16293–2422: scoundrels rule! Astrophys. J. Lett. 593, L51 (2003)

    Google Scholar 

  19. Bianchi, E., et al.: The census of interstellar complex organic molecules in the class i hot corino of SVS13-a. Mon. Not. R. Astron. Soc. 483, 1850–1861 (2019)

    Google Scholar 

  20. Bacmann, A., Taquet, V., Faure, A., Kahane, C., Ceccarelli, C.: Detection of complex organic molecules in a prestellar core: a new challenge for astrochemical models. Astron. Astrophys. 541, L12 (2012)

    Google Scholar 

  21. Vastel, C., Ceccarelli, C., Lefloch, B., Bachiller, R.: The origin of complex organic molecules in prestellar cores. Astrophys. J. Lett. 795, L2 (2014)

    Google Scholar 

  22. Lefloch, B., et al.: L1157-B1, a factory of complex organic molecules in a solar-type star-forming region. Mon. Notices Royal Astron. Soc.: Lett. 469, L73–L77 (2017)

    Google Scholar 

  23. Csengeri, T., Belloche, A., Bontemps, S., Wyrowski, F., Menten, K., Bouscasse, L.: Search for high-mass protostars with alma revealed up to kilo-parsec scales (sparks)-II. Complex organic molecules and heavy water in shocks around a young high-mass protostar. Astron. Astrophys. 632, A57 (2019)

    Google Scholar 

  24. Sakai, T., et al.: Alma observations of the IRDC clump G34.43+00.24 MM3: complex organic and deuterated molecules. Astrophys. J. 857, 35 (2018)

    Google Scholar 

  25. Lee, C.F., Codella, C., Li, Z.Y., Liu, S.Y.: First abundance measurement of organic molecules in the atmosphere of HH 212 protostellar disk. Astrophys. J. 867, 63 (2019)

    Google Scholar 

  26. Scibelli, S., Shirley, Y.: Prevalence of complex organic molecules in starless and prestellar cores within the taurus molecular cloud. Astrophys. J. 891, 73 (2020)

    Google Scholar 

  27. De Simone, M., et al.: Seeds of life in space (SOLIS)-X. interstellar complex organic molecules in the NGC 1333 IRAS 4A outflows. Astron. Astrophysi. 640, A75 (2020)

    Google Scholar 

  28. Wakelam, V., et al.: A kinetic database for astrochemistry (KIDA). Astrophys. J. Suppl. Ser. 199, 21 (2012)

    Google Scholar 

  29. McElroy, D., Walsh, C., Markwick, A., Cordiner, M., Smith, K., Millar, T.: The UMIST database for astrochemistry 2012. Astron. Astrophys. 550, A36 (2013)

    Google Scholar 

  30. Vasyunin, A.I., Caselli, P., Dulieu, F., Jiménez-Serra, I.: Formation of complex molecules in prestellar cores: a multilayer approach. Astrophys. J. 842, 33 (2017)

    Google Scholar 

  31. Skouteris, D., et al.: The genealogical tree of ethanol: gas-phase formation of glycolaldehyde, acetic acid, and formic acid. Astrophys. J. 854, 135 (2018)

    Google Scholar 

  32. Vazart, F., Ceccarelli, C., Balucani, N., Bianchi, E., Skouteris, D.: Gas-phase formation of acetaldehyde: review and new theoretical computations. Mon. Not. R. Astron. Soc. 499, 5547–5561 (2020)

    Google Scholar 

  33. Senosiain, J.P., Klippenstein, S.J., Miller, J.A.: Reaction of ethylene with hydroxyl radicals: a theoretical study. J. Phys. Chem. A 110, 6960–6970 (2006)

    Google Scholar 

  34. Zhu, R., Park, J., Lin, M.C.: Ab initio kinetic study on the low-energy paths of the HO+C2H4 reaction. Chem. Phys. Lett. 408, 25–30 (2005)

    Google Scholar 

  35. Xu, Z.F., Xu, K., Lin, M.C.: Ab initio kinetics for decomposition/isomerization reactions of C2H5O radicals. ChemPhysChem 10, 972–982 (2009)

    Google Scholar 

  36. Ratliff, B.J., Alligood, B.W., Butler, L.J., Lee, S.H., Lin, J.J.M.: Product branching from the CH2CH2OH radical intermediate of the OH+ ethene reaction. J. Phys. Chem. A 115, 9097–9110 (2011)

    Google Scholar 

  37. de Petris, G., Cartoni, A., Rosi, M., Barone, V., Puzzarini, C., Troiani, A.: The proton affinity and gas-phase basicity of sulfur dioxide. ChemPhysChem 12(1), 112–115 (2011)

    Google Scholar 

  38. Leonori, F., et al.: Observation of organosulfur products (thiovinoxy, thioketene and thioformyl) in crossed-beam experiments and low temperature rate coefficients for the reaction S (1 D)+ C 2 H 4. Phys. Chem. Chem. Phys. 11(23), 4701–4706 (2009)

    Google Scholar 

  39. de Petris, G., Rosi, M., Troiani, A.: SSOH and HSSO radicals: an experimental and theoretical study of [s2oh] 0/+/-species. J. Phys. Chem. A 111(28), 6526–6533 (2007)

    Google Scholar 

  40. Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Skouteris, D.: A theoretical study of formation routes and dimerization of methanimine and implications for the aerosols formation in the upper atmosphere of titan. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 47–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_4

    Chapter  Google Scholar 

  41. Skouteris, D., et al.: Interstellar dimethyl ether gas-phase formation: a quantum chemistry and kinetics study. Mon. Not. R. Astron. Soc. 482(3), 3567–3575 (2019)

    Google Scholar 

  42. Sleiman, C., El Dib, G., Rosi, M., Skouteris, D., Balucani, N., Canosa, A.: Low temperature kinetics and theoretical studies of the reaction CN+ CH 3 NH 2: a potential source of cyanamide and methyl cyanamide in the interstellar medium. Phys. Chem. Chem. Phys. 20(8), 5478–5489 (2018)

    Google Scholar 

  43. Berteloite, C., et al.: Low temperature kinetics, crossed beam dynamics and theoretical studies of the reaction s (1 D)+ CH 4 and low temperature kinetics of S (1 D)+ C 2 H 2. Phys. Chem. Chem. Phys. 13(18), 8485–8501 (2011)

    Google Scholar 

  44. Becke, A.D.: Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5652 (1993)

    Google Scholar 

  45. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J.: \({Ab}\)\({Initio}\) calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)

    Google Scholar 

  46. Dunning Jr, T.H.: Gaussian basis sets for use in correlated molecular calculations. I. the atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007–1023 (1989)

    Google Scholar 

  47. Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90(4), 2154–2161 (1989)

    Google Scholar 

  48. Gonzalez, C., Schlegel, H.B.: Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94(14), 5523–5527 (1990)

    Google Scholar 

  49. Bartlett, R.J.: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu. Rev. Phys. Chem. 32(1), 359–401 (1981)

    Google Scholar 

  50. Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157(6), 479–483 (1989)

    Google Scholar 

  51. Olsen, J., Jørgensen, P., Koch, H., Balkova, A., Bartlett, R.J.: Full configuration-interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 104(20), 8007–8015 (1996)

    Google Scholar 

  52. Frisch, M., et al.: Gaussian 09, Revision A. 02, 2009, Gaussian. Inc., Wallingford CT (2009)

    Google Scholar 

  53. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4(1), 1–17 (2012)

    Google Scholar 

  54. Pirani, F., Brizi, S., Roncaratti, L.F., Casavecchia, P., Cappelletti, D., Vecchiocattivi, F.: Beyond the lennard-jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys. Chem. Chem. Phys. 10(36), 5489–5503 (2008)

    Google Scholar 

  55. Cambi, R., Cappelletti, D., Liuti, G., Pirani, F.: Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations. J. Chem. Phys. 95(3), 1852–1861 (1991)

    Google Scholar 

Download references

Acknowledgments

The work presented in this paper has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 811312 for the project “Astro-Chemical Origins” (ACO). EVFA thanks the DICA (Dipartimento di eccellenza) of University of Perugia for allocated computing time. AL and NFL thank the Dipartimento di Chimica, Biologia e Biotecnologie dell’Università di Perugia (FRB, Fondo per la Ricerca di Base 2019 and 2020) and the Italian MIUR and the University of Perugia for the financial support of the AMIS project through the program “Dipartimenti di Eccellenza”. AL acknowledges the Italian Space Agency (ASI) Life in Space project (ASI N. 2019-3-U.0). AL and NFL thank the OU Supercomputing Center for Education & Research (OSCER) at the University of Oklahoma, for allocated computing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Lombardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lombardi, A., Mancini, L., de Aragão, E.V.F., Giani, L. (2021). The CH\(_2\)CH\(_2\) + OH Gas Phase Reaction: Formaldehyde and Acetaldehyde Formation Routes. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12953. Springer, Cham. https://doi.org/10.1007/978-3-030-86976-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86976-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86975-5

  • Online ISBN: 978-3-030-86976-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics