Skip to main content

Free-Methane - from the Ionosphere of Mars Towards a Prototype Methanation Reactor: A Project Producing Fuels via Plasma Assisted Carbon Dioxide Hydrogenation

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12953))

Included in the following conference series:

  • 1404 Accesses

Abstract

A major challenge in the scientific research for strategies that use low-cost renewable energy is to design and develop heterogeneous /homogeneous catalysis processes that use waste CO2 to produce fuels in a circular economy regime. In this paper a theoretical and experimental study aiming at reusing CO2 and implementing a validated laboratory technology based on a prototype methanation reactor producing carbon neutral methane through the chemical conversion of CO2 waste flue gases using renewable energies, is presented. The first operational line of the work is the theoretical, computational and experimental treatment of elementary reactive and non-reactive molecular processes occurring inside the reactor in order to optimize its operating conditions and to identify possible technological improvements that are more compatible with the environment. Experimental determinations of methane yield by the reactor have been carried out using CO2 either taken from commercial bottles or produced from fermentation of wine and vegetable exhausted materials. To this end we have also undertaken a computational and experimental investigation of a new methanation pathway aimed at avoiding the use of the solid catalyst, by exploring mechanisms involving a plasma generation by electrical discharges or by vacuum ultraviolet (VUV) photons on CO2 + H2 gas mixtures. The measurements performed using a microwave discharge beam source developed in our laboratory gave useful indications on how to proceed to develop alternative solutions to the present Ni catalysed apparatus by resorting to a gas-phase-only process for the reduction of CO2 to CH4. These results demonstrate that the chemical reactivity of plasmas containing CO2 should be strongly increased thanks to the presence of CO+ and O+ ions having a very high kinetic energy. These ionic species are produced via Coulomb explosion of CO22+ molecular dications by the same process responsible for the erosion of the atmosphere of Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cook, J., et al.: Environ. Res. Lett. 8, 2 (2013)

    Google Scholar 

  2. Oreskes, N.: Science 306(5702), 1686 (2004)

    Google Scholar 

  3. Falcinelli, S., et al.: Fuel 209, 802–811 (2017)

    Google Scholar 

  4. Laganà, A., Riganelli, A.: Reaction and Molecular Dynamics. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-57051-3. ISBN: 3-540-41202-6

  5. Laganà, A., Parker, G. A.: Chemical Reactions Basic Theory and Computing. Springer, New York (2018). https://doi.org/10.1007/978-3-319-62356-6. ISBN: 978-3-319-62355-9

  6. Falcinelli, S., Pirani, F., Vecchiocattivi, F.: Atmosphere 6(3), 299–317 (2015)

    Google Scholar 

  7. Falcinelli, S., Bartocci, A., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Chem. Eur. J. 22(2), 764–771 (2016)

    Google Scholar 

  8. Falcinelli, S., Rosi, M., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Chem. Eur. J. 22(35), 12518–12526 (2016).

    Google Scholar 

  9. PROGEO by PLC System. https://www.plc-spa.com/en/plc-system-progeo.php. Accessed 11 Mar 2021

  10. Laboratoire de Chimie et Physique Quantiques - UMR5626. http://www.lcpq.ups-tlse.fr/?lang=fr. Accessed 11 Mar 2021

  11. Rampino, S., Skouteris, D., Laganà, A., Garcia, E., Saracibar, A.: Phys. Chem. Chem. Phys. 11, 1752–1757 (2009)

    Google Scholar 

  12. Prats, H., Gamallo, P., Illas, F., Sayós, R.: J. Catal. 342, 75–83 (2016)

    Google Scholar 

  13. L’Energia che crea il tuo futuro by PLC System. https://www.plc-spa.com/it/index.php. Accessed 11 Mar 2021

  14. RadioAstroLab. https://www.radioastrolab.it/. Accessed 11 Mar 2021

  15. Chemical Processes by Johnson Matthey. http://www.jmprotech.com/methanation-catalysts-for-hydrogen-production-katalco. Accessed 16 Mar 2021

  16. Martì Aliod, C.: Networked computing for ab initio modelling the chemical storage of alternative energy, ITN-EJD-TCCM Ph.D. thesis. Università degli Studi di Perugia (Italy) and Universitè P. Sabatier de Toulouse (France), 14 December 2018

    Google Scholar 

  17. Pei, L., Carrascosa, E., Yang, N., Falcinelli, S., Farrar, J. M.: J. Phys. Chem. Lett. 6(9), 16841689 (2015)

    Google Scholar 

  18. Brunetti, B., et al.: Chem. Phys. Lett. 539–540, 19–23 (2012)

    Google Scholar 

  19. Falcinelli, S., Vecchiocattivi, F., Pirani, F.: Phys. Rev. Lett. 121, 163403 (2018)

    Google Scholar 

  20. Balucani, N., et al.: Chem. Phys. Lett. 546, 34–39 (2012)

    Google Scholar 

  21. Leonori, F., et al.: Phys. Chem. Chem. Phys. 11(23), 4701–4706 (2009)

    Google Scholar 

  22. Dobrea, S., Mihaila, I., Popa, G.: Carbon dioxide dissociation in a 2.45 GHz microwave discharge. In: Proceedings of 1st ICPIG, Granada, Spain, vol. 14 (2013)

    Google Scholar 

  23. Dobrea, S., Mihaila, I., Tiron, V., Popa, G.: Roman Rep. Phys. 66, 1147–1154 (2014)

    Google Scholar 

  24. de la Fuente, J.F., Moreno, S.H., Stankiewicz, A.I., Stefanidis, G. D.: Int. J. Hydrogen Energy 41, 21067–21077 (2016)

    Google Scholar 

  25. Falcinelli, S.: Catal. Today 348, 95–101 (2020)

    Google Scholar 

  26. Hayashi, N., Yamakawa, T., Baba, S.: Vacuum 80, 1299–1304 (2006)

    Google Scholar 

  27. Gervasi, O., Laganà, A.: SIMBEX: a portal for the a priori simulation of crossed beam experiments. Futur. Gener. Comput. Syst. 20(5), 703–716 (2004)

    Article  Google Scholar 

  28. Laganà, A., et al.: Virt&l-Comm.10.2016.6. http://services.chm.unipg.it/ojs/index.php/virtlcomm/article/view/151. Accessed 16 Mar 2021

  29. Laganà A., Riganelli A., Gervasi O. (2006) On the Structuring of the computational chemistry virtual organization COMPCHEM. In: Gavrilova, M., et al. (eds.) Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol. 3980. Springer, Heidelberg. https://doi.org/10.1007/11751540_70

  30. Towards a CMMST VRC team project report. https://wiki.egi.eu/wiki/Towards_a_CMMST_VRC. Accessed 16 Mar 2021

  31. European Cost Action D23: Metalaboratories For Complex Computational Applications in Chemistry. https://www.cost.eu/actions/D23/#tabs|Name:overview/. Accessed 16 Mar 2021

  32. European Cost Action D37: Grid Computing in Chemistry. https://www.cost.eu/actions/D37/#tabs|Name:overview/. Accessed 16 Mar 2021

    Google Scholar 

  33. European Chemistry Thematic network. http://ectn.eu/. Accessed 16 Mar 2021

  34. Enabling Grids for E-sciencE III (EGEE III). https://cordis.europa.eu/project/rcn/87264/factsheet/en. Accessed 16 Mar 2021

  35. EGI-Inspire. https://wiki.egi.eu/wiki/EGI-InSPIRE:Main_Page. Accessed 16 Mar 2021

  36. Laganà, A.: Virt&l-Comm.16.2019.5. http://services.chm.unipg.it/ojs/index.php/virtlcomm/article/view/210. Accessed 16 Mar 2021

  37. European Open Science Cloud. https://ec.europa.eu/research/openscience/index.cfm?pg=open-science-cloud. Accessed 16 Mar 2021

  38. EOSCpilot. https://eoscpilot.eu/. Accessed 16 Mar 2021

  39. Vitillaro, G., Laganà, A.: Virt&l-Comm.20.2020.7. http://services.chm.unipg.it/ojs/index.php/virtlcomm/article/view/248. Accessed 2 Apr 2021

  40. Laganà, A., Garcia, E.: Virt&l-Comm.18.2019.3. http://services.chm.unipg.it/ojs/index.php/virtlcomm/article/view/219. Accessed 16 Mar 2021

  41. Skouteris, D., Balucani, N., Faginas-Lago, N., Falcinelli, S., Rosi, M.: A&A 584, A76 (2015)

    Google Scholar 

  42. EChemTest by ECTN. http://ectn.eu/committees/virtual-education-community/echemtest/. Accessed 16 Mar 2021

  43. Laganà, A., di Giorgio, L.: Lecture Notes in Computer Science, vol. 10962, pp. 549–562 (2018)

    Google Scholar 

  44. QCArchive. https://qcarchive.molssi.org/. Accessed 16 Mar 2021

  45. NIST Chemical Kinetics Database. http://kinetics.nist.gov. Accessed 16 Mar 2021

  46. Wakelam, V., et al.: AstroPhys. J. Suppl. Ser. 199, 21 (2012)

    Google Scholar 

  47. McElroy, D., Walsh, C., Markwick, A.J., Cordiner, M.A., Smith, K., Millar, T.J.: A&A 550, A36 (2013)

    Google Scholar 

  48. Laganà, A., Gervasi, O., Tasso, S., Perri, D., Franciosa, F.: The ECTN virtual education community prosumer model for promoting and assessing chemical knowledge. In: Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 533–548. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_42

    Chapter  Google Scholar 

  49. Álvarez-Moreno, M., de Graaf, C., López, N., Maseras, F., Poblet, J.M., Bo, C.: J. Chem. Inf. Model. 55(1), 95–103 (2015)

    Google Scholar 

  50. I.S.A.FO.M. by CNR, Perugia. http://www.iro.pg.cnr.it/. Accessed 16 Mar 2021

  51. 3A Parco Tecnologico Agroalimentare Dell'Umbria, Pantalla Todi (Italy). http://www.parco3a.org. Accessed 16 Mar 2021

  52. Alagia, M., et al.: Phys. Chem. Chem. Phys. 12, 5389–5395 (2010)

    Google Scholar 

  53. Falcinelli, S., Pirani, F., Alagia, M., Schio, L., Richter, R., et al.: Chem. Phys. Lett. 666, 1–6 (2016)

    Google Scholar 

  54. Falcinelli, S., Rosi, M., Candori, P., Farrar, J.M., Vecchiocattivi, F., et al.: Planet. Space Sci. 99, 149–157 (2014)

    Article  Google Scholar 

  55. Falcinelli, S., Vecchiocattivi, F., Pirani, F.: Commun. Chem. 3(1), 64 (2020)

    Google Scholar 

  56. Falcinelli, S., Farrar, J. M., Vecchiocattivi, F., Pirani, F.: Acc. Chem. Res. 53, 2248–2260 (2020)

    Google Scholar 

  57. Leonori, F., et al.: Chem. A 113(16), 4330–4339 (2009)

    Google Scholar 

  58. De Petris, G., Cartoni, A., Rosi, M., Barone, V., Puzzarini, C., Troiani, A.: ChemPhysChem 12(1), 112–115 (2011)

    Google Scholar 

  59. Alagia, M., et al.: Lincei Sci. Fis. Nat. 24(1), 53–65 (2013)

    Google Scholar 

  60. Podio, L., et al.: MNRAS 470(1), L16–L20 (2017)

    Google Scholar 

  61. Thema, M., Bauer, F., Sterner, M.: Power-to-Gas: Renewable & Sustainable Energy Reviews 112, 775–787 (2019)

    Google Scholar 

  62. Vogt, C., Monai, M., Kramer, G.J., Weckhuysen, B.M.: Nat. Catal. 2(3), 188–197 (2019)

    Google Scholar 

  63. George, A., et al.: Renew. Sustain. Energy Rev. 135, 109702 (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported and financed with the “Fondo Ricerca di Base, 2018, dell’Università degli Studi di Perugia” (Project Titled: Indagini teoriche e sperimentali sulla reattività di sistemi di interesse astrochimico). Support from Italian MIUR and University of Perugia (Italy) is acknowledged within the program “Dipartimenti di Eccellenza 2018-2022”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Falcinelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Falcinelli, S., Rosi, M., Parriani, M., Laganà, A. (2021). Free-Methane - from the Ionosphere of Mars Towards a Prototype Methanation Reactor: A Project Producing Fuels via Plasma Assisted Carbon Dioxide Hydrogenation. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12953. Springer, Cham. https://doi.org/10.1007/978-3-030-86976-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86976-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86975-5

  • Online ISBN: 978-3-030-86976-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics