Skip to main content

A Computational Study on the Attack of Nitrogen and Oxygen Atoms to Toluene

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

The interaction between nitrogen atoms in their first electronically excited state 2D and oxygen atoms in their ground state 3P or in the first electronically excited state 1D with toluene has been characterized by electronic structure calculations. We focused our attention, in particular, on the different sites of attack of nitrogen or oxygen to toluene using different methods. Our results suggest that, while for geometry optimizations DFT methods are adequate and different DFT methods provide comparable results, in order to compute accurate energies higher level of calculations, as CCSD(T), are necessary, in particular when strong correlation effects are present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brezinsky, K.: The high-temperature oxidation of aromatic hydrocarbons. Prog. Energy Combust. 12, 1–24 (1986)

    Google Scholar 

  2. Atkinson, R., Pitts, J.N.: Rate constants for the reaction of O(3P) atoms with benzene and toluene over the temperature range 299–440 K. Chem. Phys. Lett. 63, 485–489 (1979)

    Google Scholar 

  3. Nicovich, J.M., Gump, C.A., Ravishankara, A.R.: Rates of reactions of O(3P) with benzene and toluene. J. Phys. Chem. 86, 1684–1690 (1982)

    Google Scholar 

  4. Tappe, M., Schliephake, V., Wagner, H.G.: Reactions of benzene, toluene and ethylbenzene with atomic oxygen O(3P) in the gas phase. Z. Phys. Chem. 162, 129–145 (1989)

    Google Scholar 

  5. Cavallotti, C., et al.: Relevance of the channel leading to formaldehyde + triplet ethylidene in the O(3P)+propene reaction under combustion conditions. J. Phys. Chem. Lett. 5, 4213–4218 (2014)

    Google Scholar 

  6. Leonori, F., et al.: Experimental and theoretical studies on the dynamics of the O(3P)+propene reaction: primary products, branching ratios, and role of intersystem crossing. J. Phys. Chem. C 119, 14632–14652 (2015)

    Google Scholar 

  7. Gimondi, I., Cavallotti, C., Vanuzzo, G., Balucani, N., Casavecchia, P.: Reaction dynamics of O(3P)+propyne: II. Primary products, branching ratios, and role of intersystem crossing from ab initio coupled triplet/singlet potential energy surfaces and statistical calculations. J. Phys. Chem. A 120, 4619–4633 (2016)

    Google Scholar 

  8. Caracciolo, A., et al.: Combined experimental and theoretical studies of the O(3P)+1-butene reaction dynamics: primary products, branching ratios and role of intersystem crossing. J. Phys. Chem. A 123, 9934–9956 (2019)

    Google Scholar 

  9. Hörst, S. M.: Titan’s atmosphere and climate. J. Geophys. Res. Planets 122, 432–482 (2017)

    Google Scholar 

  10. Vuitton, V., Yelle, R.V., Anicich, V.G.: The nitrogen chemistry of Titan’s upper atmosphere revealed. Astrophys. J. 647, L175–L178 (2006)

    Google Scholar 

  11. Vuitton, V., Dutuit, O., Smith, M.A., Balucani, N.: Chemistry of Titan's atmosphere. In: Mueller-Wodarg, I., Griffith, C., Lellouch, E., Cravens, T. (eds.) Titan: Surface, Atmosphere and Magnetosphere, Cambridge University Press (2013)

    Google Scholar 

  12. Balucani, N.: Elementary reactions of N atoms with hydrocarbons: first steps towards the formation of prebiotic N-containing molecules in planetary atmospheres. Chem. Soc. Rev. 41, 5473–5483 (2012)

    Google Scholar 

  13. Brown, R., Lebreton, J.P., Waite, J. (eds.): Titan from Cassini-Huygens. Springer, Nethelands (2010). https://doi.org/10.1007/978-1-4020-9215-2

  14. Vuitton, V., Yelle, R.V., Cui, J.: Formation and distribution of benzene on Titan. J. Geophys. Res. 113, E05007 (2008)

    Google Scholar 

  15. Loison, J.C., Dobrijevic, M., Hickson, K.M.: The photochemical production of aromatics in the atmosphere of Titan. Icarus 329, 55–71 (2019)

    Google Scholar 

  16. Lavvas, P., et al.: Energy deposition and primary chemical products in Titan’s upper atmosphere. Icarus 213, 233–251 (2011)

    Google Scholar 

  17. Balucani, N., et al.: Combined crossed molecular beam and theoretical studies of the N(2D) + CH4 reaction and implications for atmospheric models of Titan. J. Phys. Chem. A 113, 11138–11152 (2009)

    Google Scholar 

  18. Balucani, N., et al.: Cyanomethylene formation from the reaction of excited nitrogen atoms with acetylene: a crossed beam and ab initio study. J. Am. Chem. Soc. 122, 4443–4450 (2000)

    Google Scholar 

  19. Balucani, N., Cartechini, L., Alagia, M., Casavecchia, P., Volpi, G.G.: Observation of nitrogen-bearing organic molecules from reactions of nitrogen atoms with hydrocarbons: a crossed beam study of N(2D) + ethylene. J. Phys. Chem. A 104, 5655–5659 (2000)

    Google Scholar 

  20. Balucani, N., et al.: Formation of nitriles and imines in the atmosphere of Titan: combined crossed-beam and theoretical studies on the reaction dynamics of excited nitrogen atoms N(2D) with ethane. Faraday Discuss. 147, 189–216 (2010)

    Google Scholar 

  21. Balucani, N., et al.: Combined crossed beam and theoretical studies of the N(2D) + C2H4 reaction and implications for atmospheric models of Titan. J. Phys. Chem. A 116, 10467–10479 (2012)

    Google Scholar 

  22. Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Skouteris, D.: A theoretical study of formation routes and dimerization of methanimine and implications for the aerosols formation in the upper atmosphere of Titan. Lect. Notes Comp. Sci. 7971, 47–56 (2013)

    Google Scholar 

  23. Balucani, N., Pacifici, L., Skouteris, D., Caracciolo, A., Casavecchia, P., Rosi, M.: A theoretical investigation of the reaction N(2D) + C6H6 and implications for the upper atmosphere of Titan. Lect. Notes Comp. Sci. 10961, 763–772 (2018)

    Google Scholar 

  24. Rosi, M., et al.: A computational study on the insertion of N(2D) into a C—H or C—C bond: the reactions of N(2D) with benzene and toluene and their implications on the chemistry of Titan. Lect. Notes Comp. Sci. 12251, 744–755 (2020)

    Google Scholar 

  25. Balucani, N., et al.: A computational study of the reaction N(2D) + C6H6 leading to pyridine and phenylnitrene. LNCS 11621, 316–324 (2019)

    Google Scholar 

  26. Chai, J.-D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008)

    Google Scholar 

  27. Chai, J.-D., Head-Gordon, M.: Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 128, 084106 (2008)

    Google Scholar 

  28. Becke, A.D.: Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Google Scholar 

  29. Stephens, P.J., Devlin, F.J., Chablowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994)

    Google Scholar 

  30. Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A.: Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980)

    Google Scholar 

  31. Frisch, M.J., Pople, J.A., Binkley, J.S.: Self-consistent molecular orbital methods 28. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80, 3265–3269 (1984)

    Google Scholar 

  32. Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90, 2154–2161 (1989)

    Google Scholar 

  33. Gonzalez, C., Schlegel, H.B.: Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523–5527 (1990)

    Google Scholar 

  34. Bartlett, R.J.: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Ann. Rev. Phys. Chem. 32, 359–401 (1981)

    Google Scholar 

  35. Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: Quadratic configuration interaction. A general technique for determining electron correlation energies. Chem. Phys. Lett. 157, 479–483 (1989)

    Google Scholar 

  36. Olsen, J., Jorgensen, P., Koch, H., Balkova, A., Bartlett, R.J.: Full configuration–interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 104, 8007–8015 (1996)

    Google Scholar 

  37. Dunning, T.H., Jr.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    Google Scholar 

  38. de Petris, G., Cacace, F., Cipollini, R., Cartoni, A., Rosi, M., Troiani, A.: Experimental detection of theoretically predicted N2CO. Angew. Chem. 117, 466–469 (2005)

    Google Scholar 

  39. De Petris, G., Rosi, M., Troiani, A.: SSOH and HSSO radicals: an experimental and theoretical study of [S2OH]0/+/- species. J. Phys. Chem. A 111, 6526–6533 (2007)

    Google Scholar 

  40. Bartolomei, M., et al.: The intermolecular potential in NO–N2 and (NO–N2)+ systems: implications for the neutralization of ionic molecular aggregates. PCCP 10, 5993–6001 (2008)

    Google Scholar 

  41. Leonori, F., et al.: Observation of organosulfur products (thiovinoxy, thioketene and thioformyl) in crossed-beam experiments and low temperature rate coefficients for the reaction S(1D) + C2H4. PCCP 11, 4701–4706 (2009)

    Google Scholar 

  42. Leonori, F., et al.: Crossed-beam and theoretical studies of the S(1D) + C2H2 reaction. J. Phys. Chem. A 113, 4330–4339 (2009)

    Google Scholar 

  43. De Petris, G., Cartoni, A., Rosi, M., Barone, V., Puzzarini, C., Troiani, A.: The proton affinity and gas-phase basicity of sulfur dioxide. ChemPhysChem 12, 112–115 (2011)

    Google Scholar 

  44. Berteloite, C., et al.: Low temperature kinetics, crossed beam dynamics and theoretical studies of the reaction S(1D) + CH4 and low temperature kinetics of S(1D) + C2H2. Phys. Chem. Chem. Phys. 13, 8485–8501 (2011)

    Google Scholar 

  45. Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Leonori, F., Skouteris, D.: Theoretical study of reactions relevant for atmospheric models of Titan: interaction of excited nitrogen atoms with small hydrocarbons. LNCS 7333, 331–344 (2012)

    Google Scholar 

  46. Skouteris, D., Balucani, N., Faginas-Lago, N., Falcinelli, S., Rosi, M.: Dimerization of methanimine and its charged species in the atmosphere of Titan and interstellar/cometary ice analogs. Astron. Astrophys. 584, A76 (2015)

    Google Scholar 

  47. Falcinelli, S., Rosi, M., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Stereoselectivity in autoionization reactions of hydrogenated molecules by metastable gas atoms: the role of electronic couplings. Chem. Eur. J. 22, 12518–12526 (2016)

    Google Scholar 

  48. Troiani, A., Rosi, M., Garzoli, S., Salvitti, C., de Petris, G.: Vanadium hydroxide cluster ions in the gas phase: bond-forming reactions of doubly-charged negative ions by SO2-promoted V-O activation. Chem. Eur. J. 23, 11752–11756 (2017)

    Google Scholar 

  49. Rosi, M., et al.: An experimental and theoretical investigation of 1-butanol pyrolysis. Front. Chem. 7, 326 (2019). https://doi.org/10.3389/fchem.2019.00326

    Article  Google Scholar 

  50. Moore, C. E.: Atomic Energy Levels, Natl. Bur. Stand. (U.S.) Circ. N. 467. U.S., GPO, Washington (1949)

    Google Scholar 

  51. Frisch, M. J., et al.: Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford (2009)

    Google Scholar 

  52. Flükiger, P., Lüthi, H. P., Portmann, S., Weber, J., MOLEKEL 4.3, Swiss Center for Scientific Computing, Manno (Switzerland), 2000–2002

    Google Scholar 

  53. Portmann, S., Lüthi, H.P.: MOLEKEL: an interactive molecular graphics tool. Chimia 54, 766–769 (2000)

    Google Scholar 

  54. Chin, C.-H., Zhu, T., Zhang, J.Z.H.: Cyclopentadienyl radical formation from the reaction of excited nitrogen atoms with benzene: a theoretical study. PCCP (2021), online version. https://doi.org/10.1039/d1cp00133g

Download references

Acknowledgments

We acknowledge the MUR (Ministero dell’Università e della Ricerca) for “PRIN 2017” funds, project “Modeling and Analysis of carbon nanoparticles for innovative applications Generated dIrectly and Collected DUring combuSTion (MAGIC DUST)”, Grant Number 2017PJ5XXX. SF and MR acknowledge the project “Indagini teoriche e sperimentali sulla reattività di sistemi di interesse astrochimico” funded with Fondo Ricerca di Base of the University of Perugia. MR thanks the Department of Civil and Environmental Engineering of the University of Perugia for allocated computing time within the project “Dipartimenti di Eccellenza 2018–2022”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzio Rosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosi, M. et al. (2021). A Computational Study on the Attack of Nitrogen and Oxygen Atoms to Toluene. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12953. Springer, Cham. https://doi.org/10.1007/978-3-030-86976-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86976-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86975-5

  • Online ISBN: 978-3-030-86976-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics