Skip to main content

Deep Fake Recognition in Tweets Using Text Augmentation, Word Embeddings and Deep Learning

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Spreading of automatically generated clickbaits, fake news, and fake reviews undermines the veracity of the internet as a credible source of information. We investigate the problem of recognizing automatically generated short texts by exploring different Deep Learning models. To improve the classification results, we use text augmentation techniques and classifier hyperparameter optimization. For word embedding and vectorization we use Glove and RoBERTa. We compare the performance of dense neural network, convolutional neural network, gated recurrent network, and hierarchical attention network. The experiments on the TweepFake dataset achieved an 89.7% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paterson, T., Hanley, L.: Political warfare in the digital age: cyber subversion, information operations and ‘deep fakes.’ Aust. J. Int. Aff. 74(4), 439–454 (2020)

    Article  Google Scholar 

  2. Tandoc, E.C., Lim, Z.W., Ling, R.: Defining “Fake news”: a typology of scholarly definitions. Digit. Journal. 6(2), 137–153 (2018)

    Google Scholar 

  3. Bastos, M.T., Mercea, D.: The brexit botnet and user-generated hyperpartisan news. Soc. Sci. Comput. Rev. 37(1), 38–54 (2019)

    Article  Google Scholar 

  4. Assibong, P.A., Wogu, I.A.P., Sholarin, M.A., Misra, S., Damasevičius, R., Sharma, N.: The politics of artificial intelligence behaviour and human rights violation issues in the 2016 US presidential elections: An appraisal. In: Sharma, N., Chakrabarti, A., Balas, V.E. (eds.) Data Management, Analytics and Innovation. AISC, vol. 1016, pp. 295–309. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-9364-8_22

    Chapter  Google Scholar 

  5. Wang, Y., McKee, M., Torbica, A., Stuckler, D.: Systematic literature review on the spread of health-related misinformation on social media. Soc. Sci. Med. 240, 112552 (2019)

    Google Scholar 

  6. Shimizu, K.: 2019-nCoV, fake news, and racism. Lancet 395(10225), 685–686 (2020)

    Article  Google Scholar 

  7. Kapočiute-Dzikiene, J.: A domain-specific generative chatbot trained from little data. Appl. Sci. 10(7), 2221 (2020)

    Article  Google Scholar 

  8. Dandekar, A., Zen, R.A.M., Bressan, S.: Generating fake but realistic headlines using deep neural networks. In: Benslimane, D., Damiani, E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R. (eds.) DEXA 2017. LNCS, vol. 10439, pp. 427–440. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64471-4_34

    Chapter  Google Scholar 

  9. Chakraborty, A., Paranjape, B., Kakarla, S., Ganguly, N.: Stop clickbait: detecting and preventing clickbaits in online news media. IEEE/ACM Int. Conf. Adv. Soc. Netw. Anal. Mining, ASONAM 2016, 9–16 (2016)

    Google Scholar 

  10. Malbon, J.: Taking fake online consumer reviews seriously. J. Consumer Policy 36(2), 139–157 (2013)

    Article  Google Scholar 

  11. Ji, Z., Pi, H., Wei, W., Xiong, B., Wozniak, M., Damasevicius, R.: Recommendation based on review texts and social communities: a hybrid model. Access 7, 40416–40427 (2019)

    Article  Google Scholar 

  12. Kapočiūtė-Dzikienė, J., Balodis, K., Skadiņš, R.: Intent detection problem solving via automatic DNN hyperparameter optimization. Appl. Sci. 10(21), 1–21 (2020)

    Article  Google Scholar 

  13. Wei, W., Ke, Q., Nowak, J., Korytkowski, M., Scherer, R., Woźniak, M.: Accurate and fast URL phishing detector: a convolutional neural network approach. Comput. Netw. 178, 107275 (2020). https://doi.org/10.1016/j.comnet.2020.107275

    Article  Google Scholar 

  14. Zhang, B., Wei, W., Wang, W., Li, Y., Cui, H., Si, Q.: Modeling topic propagation on heterogeneous online social networks. In: 2018 IEEE 18th International Conference on Software Quality, Reliability, and Security Companion, QRS-C 2018, pp. 641–642 (2018)

    Google Scholar 

  15. Lin, J., et al.: Attention-based high-order feature interactions to enhance the recommender system for web-based knowledge-sharing service. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2020. LNCS, vol. 12342, pp. 461–473. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62005-9_33

    Chapter  Google Scholar 

  16. Omoregbe, N.A.I., Ndaman, I.O., Misra, S., Abayomi-Alli, O.O., Damaševičius, R.: text messaging-based medical diagnosis using natural language processing and fuzzy logic. J. Healthcare Eng. 2020, 1–14 (2020)

    Article  Google Scholar 

  17. Li, C., Su, Y., Liu, W.: Text-to-text generative adversarial networks. International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, pp. 1–7 (2018)

    Google Scholar 

  18. Wogu, I.A., Misra, S., Assibong, P., Adewumi, A., Damasevicius, R., Maskeliunas, R.: A critical review of the politics of artificial intelligent machines, alienation and the existential risk threat to America’s labour force. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10963, pp. 217–232. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95171-3_18

    Chapter  Google Scholar 

  19. Wogu, I.A.P., Misra, S., Roland-Otaru, C.O., Udoh, O.D., Awogu-Maduagwu, E., Damasevicius, R.: Human rights’ issues and media/communication theories in the wake of artificial intelligence technologies: The fate of electorates in twenty-first-century american politics. In: Advances in Electrical and Computer Technologies, pp. 319-333 (2020)

    Google Scholar 

  20. Lazer, D.M.J., et al.: The science of fake news: addressing fake news requires a multidisciplinary effort. Science 359(6380), 1094–1096 (2018)

    Article  Google Scholar 

  21. Reis, J.C.S., Correia, A., Murai, F., Veloso, A., Benevenuto, F., Cambria, E.: Supervised learning for fake news detection. IEEE Intell. Syst. 34(2), 76–81 (2019)

    Article  Google Scholar 

  22. Bondielli, A., Marcelloni, F.: A survey on fake news and rumour detection techniques. Inf. Sci. 497, 38–55 (2019)

    Article  Google Scholar 

  23. Ren, Y., Ji, D.: Neural networks for deceptive opinion spam detection: an empirical study. Inf. Sci. 385, 213–224 (2017)

    Article  Google Scholar 

  24. Hajek, P., Barushka, A., Munk, M.: Fake consumer review detection using deep neural networks integrating word embeddings and emotion mining. Neural Comput. Appl. 32(23), 17259–17274 (2020). https://doi.org/10.1007/s00521-020-04757-2

    Article  Google Scholar 

  25. Zheng, H., Chen, J., Yao, X., Sangaiah, A.K., Jiang, Y., Zhao, C.: Clickbait convolutional neural network. Symmetry 10(5), 138 (2018)

    Google Scholar 

  26. Ajao, O., Bhowmik, D., Zargari, S.: Fake news identification on twitter with hybrid CNN and rnn models. In: 9th International Conference on Social Media and Society, pp. 226–230 (2018)

    Google Scholar 

  27. Asghar, M.Z., Habib, A., Habib, A., Khan, A., Ali, R., Khattak, A.: Exploring deep neural networks for rumor detection. J. Ambient. Intell. Humaniz. Comput. 12(4), 4315–4333 (2019). https://doi.org/10.1007/s12652-019-01527-4

    Article  Google Scholar 

  28. Fang, Y., Gao, J., Huang, C., Peng, H., Wu, R.: Self multi-head attention-based convolutional neural networks for fake news detection. PLoS ONE 14(9), e0222713 (2019)

    Google Scholar 

  29. Ghanem, B., Rosso, P., Rangel, F.: An emotional analysis of false information in social media and news articles. ACM Trans. Internet Technol. 20(2), 19 (2020)

    Article  Google Scholar 

  30. Jwa, H., Oh, D., Park, K., Kang, J.M., Lim, H.: exBAKE: Automatic fake news detection model based on bidirectional encoder representations from transformers (BERT). Appl. Sci. 9(19), 4062 (2019)

    Article  Google Scholar 

  31. Kaliyar, R.K., Goswami, A., Narang, P., Sinha, S.: FNDNet – A deep convolutional neural network for fake news detection. Cogn. Syst. Res. 61, 32–44 (2020)

    Article  Google Scholar 

  32. Liu, Y., Wu, Y.B.: FNED: A deep network for fake news early detection on social media. ACM Trans. Inf. Syst. 38(3), 25 (2020)

    Article  Google Scholar 

  33. Umer, M., Imtiaz, Z., Ullah, S., Mehmood, A., Choi, G.S., On, B.: Fake news stance detection using deep learning architecture (CNN-LSTM). Access 8, 156695–156706 (2020)

    Article  Google Scholar 

  34. Yao, H., Jia, X., Kumar, V., Li, Z.: Learning with small data. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 3539–3540 (2020)

    Google Scholar 

  35. Molina, M.Á., Asencio-Cortés, G., Riquelme, J.C., Martínez-Álvarez, F.: A preliminary study on deep transfer learning applied to image classification for small datasets. In: 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020), pp. 741–750 (2021)

    Google Scholar 

  36. Moreno-Barea, F.J., Jerez, J.M., Franco, L.: Improving classification accuracy using da-ta augmentation on small data sets. Expert Syst. Appl. 161, 113696 (2020)

    Google Scholar 

  37. Sun, X., He, J.: A novel approach to generate a large scale of supervised data for short text sentiment analysis. Multimedia Tools Appl. 79(9–10), 5439–5459 (2018). https://doi.org/10.1007/s11042-018-5748-4

    Article  Google Scholar 

  38. Park, D., Ahn, C.W.: Self-supervised contextual data augmentation for natural language processing. Symmetry 11(11), 1393 (2019)

    Article  Google Scholar 

  39. Fadaee, M., Bisazza, A., Monz, C.: Data augmentation for low-resource neural machine translation. arXiv:1705.00440 (2017)

  40. Xie, Z., Wang, S.I., Li, J., Lévy, D., Nie, A., Jurafsky, D., Ng, A.Y.: Data noising as smoothing in neural network language models. arXiv:1703.02573 (2017)

  41. Kobayashi, S.: Contextual augmentation: Data augmentation by words with paradigmatic relations. arXiv:1805.06201 (2018)

  42. Gao, F., et al.: Soft contextual data augmentation for neural machine translation. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5539–5544 (2019).

    Google Scholar 

  43. Fagni, T., Falchi, F., Gambini, M., Martella, A., Tesconi, M.: TweepFake: About detecting deepfake tweets. PLOS ONE 16(5), e0251415 (2021)

    Google Scholar 

  44. Fox, C.: A stop list for general text. ACM SIGIR forum 24(1–2), 19–21 (1989)

    Article  Google Scholar 

  45. Jiang, J., Zhai, C.: An empirical study of tokenization strategies for biomedical information retrieval. Inf. Retrieval 10, 341–363 (2007)

    Article  Google Scholar 

  46. Harman, D.: How effective is suffixing? J. Am. Soc. Inf. Sci. 42(1), 7–15 (1991)

    Article  Google Scholar 

  47. Li, Y., Li, X., Yang, Y., Dong, R.: A diverse data augmentation strategy for low-resource neural machine translation. Information 11(5), 255 (2020)

    Article  Google Scholar 

  48. Wei, J.W., Zou, K.: EDA: Easy data augmentation techniques for boosting performance on text classification tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 6382–6388 (2019)

    Google Scholar 

  49. Nasir, I.M., et al.: Pearson correlation-based feature selection for document classification using balanced training. Sensors 20(23), 6793 (2020)

    Article  Google Scholar 

  50. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. Conference on Empirical Methods in Natural Language Processing, pp. 1532–1543 (2014)

    Google Scholar 

  51. Liu, Y., et al.: RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692 (2019)

  52. Cho, K., et al.: Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv:1406.1078 (2014)

  53. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  54. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv:1409.0473 (2014).

  55. Ragab, M.G., et al.: A novel one-dimensional cnn with exponential adaptive gradients for air pollution index prediction. Sustainability 12, 10090 (2020)

    Article  Google Scholar 

  56. Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., Vollgraf, R.: FLAIR: an Easy-to-Use Framework for State-of-the-Art NLP. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, pp. 54–59 (2019)

    Google Scholar 

  57. Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., Cox, D.D.: Hyperopt: a python library for model selection and hyperparameter optimization. Comput. Sci. Discov. 8(1), 014008 (2015)

    Google Scholar 

Download references

Acknowledgment

Future work will aim on the improvement of discussed architectures specifically focusing on the problem of the small dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robertas Damaševičius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tesfagergish, S.G., Damaševičius, R., Kapočiūtė-Dzikienė, J. (2021). Deep Fake Recognition in Tweets Using Text Augmentation, Word Embeddings and Deep Learning. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12954. Springer, Cham. https://doi.org/10.1007/978-3-030-86979-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86979-3_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86978-6

  • Online ISBN: 978-3-030-86979-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics