Skip to main content

Ranking Schemas by Focus: A Cognitively-Inspired Approach

  • Conference paper
  • First Online:
Graph-Based Representation and Reasoning (ICCS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12879))

Included in the following conference series:

  • 447 Accesses

Abstract

The main goal of this paper is to evaluate knowledge base schemas, modeled as a set of entity types, each such type being associated with a set of properties, according to their focus. We model the notion of focus as “the state or quality of being relevant in storing and retrieving information”. This definition of focus is adapted from the notion of “categorization purpose”, as first defined in cognitive psychology. In turn, this notion is formalized based on a set of knowledge metrics that, for any given focus, rank knowledge base schemas according to their quality. We apply the proposed methodology on a large data set of state-of-the-art knowledge base schemas and we show how it can be used in practice (Data and scripts are available at https://github.com/knowdive/Focus).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Something (A) is relevant to a task (T) if it increases the likelihood of accomplishing the goal (G), which is implied by T” [14].

  2. 2.

    http://schema.org/.

  3. 3.

    https://wiki.dbpedia.org/.

  4. 4.

    https://www.w3.org/2001/sw/WebOnt/.

  5. 5.

    See [20] for an overview of the multiple available approaches and applications.

  6. 6.

    https://www.w3.org/TR/turtle/.

  7. 7.

    https://lov.linkeddata.es/dataset/lov.

  8. 8.

    https://developers.google.com/freebase.

  9. 9.

    http://www.adampease.org/OP/.

  10. 10.

    https://pythonhosted.org/ordf/ordf_vocab_opencyc.html.

  11. 11.

    http://def.seegrid.csiro.au/isotc211/iso19115/2003/metadata.

  12. 12.

    http://www.ontotext.com/proton/protonext.html.

  13. 13.

    http://ns.inria.fr/ludo/v1/docs/gamemodel.html.

  14. 14.

    https://lov.linkeddata.es/dataset/lov/vocabs/akt.

  15. 15.

    https://gabriel-alex.github.io/cwmo/.

  16. 16.

    https://github.com/dbpedia/ontology-tracker/tree/master/ontologies/spitfire-project.eu.

  17. 17.

    A lot of KBSs have entity types labels codified by an ID.

References

  1. Rosch, E.: Principles of categorization. Concepts: Core Readings 189 (1999)

    Google Scholar 

  2. Harnad, S.: To cognize is to categorize: cognition is categorization. In: Handbook of Categorization in Cognitive Science, pp. 21–54. Elsevier (2017)

    Google Scholar 

  3. Millikan, R.G.: On Clear and Confused Ideas: An Essay About Substance Concepts. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  4. Giunchiglia, F., Fumagalli, M.: Concepts as (recognition) abilities. In: FOIS, pp. 153–166 (2016)

    Google Scholar 

  5. Qiao, L., Yang, L., Hong, D., Yao, L., Zhiguang, Q.: Knowledge graph construction techniques. J. Comput. Res. Dev. 53(3), 582–600 (2016)

    Google Scholar 

  6. Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 1–17. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92673-3_0

    Chapter  Google Scholar 

  7. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. web 8(3), 489–508 (2017)

    Article  Google Scholar 

  8. Shadbolt, N., Smart, P.R., Wilson, J.R., Sharples, S.: Knowledge elicitation. Eval. Hum. Work 163–200 (2015)

    Google Scholar 

  9. McDaniel, M., Storey, V.C.: Evaluating domain ontologies: clarification, classification, and challenges. ACM Comput. Surv. (CSUR) 52(4), 1–44 (2019)

    Google Scholar 

  10. Degbelo, A.: A snapshot of ontology evaluation criteria and strategies. In: Proceedings of the 13th International Conference on Semantic Systems, pp. 1–8 (2017)

    Google Scholar 

  11. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2015)

    Article  Google Scholar 

  12. Fumagalli, M., Bella, G., Conti, S., Giunchiglia, F.: Ontology-driven cross-domain transfer learning. In: Formal Ontology in Information Systems, pp. 249–263. IOS Press (2020)

    Google Scholar 

  13. Millikan, R.G.: Beyond Concepts: Unicepts, Language, and Natural Information. Oxford University Press (2017)

    Google Scholar 

  14. Hjørland, B., Christensen, F.S.: Work tasks and socio-cognitive relevance: a specific example. J. Am. Soc. Inform. Sci. Technol. 53(11), 960–965 (2002)

    Article  Google Scholar 

  15. Giunchiglia, F., Fumagalli, M.: Entity type recognition-dealing with the diversity of knowledge. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, vol. 17, pp. 414–423 (2020)

    Google Scholar 

  16. Fumagalli, M., Bella, G., Giunchiglia, F.: Towards understanding classification and identification. In: Nayak, A.C., Sharma, A. (eds.) PRICAI 2019. LNCS (LNAI), vol. 11670, pp. 71–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29908-8_6

    Chapter  Google Scholar 

  17. Rosch, E., Mervis, C.B.: Family resemblances: studies in the internal structure of categories. Cogn. Psychol. 7(4), 573–605 (1975)

    Article  Google Scholar 

  18. Giunchiglia, F., Fumagalli, M.: On knowledge diversity. In: Proceedings of the 2019 Joint Ontology Workshops, WOMoCoE (2019)

    Google Scholar 

  19. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  20. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl.-Based Syst. 151, 78–94 (2018)

    Article  Google Scholar 

  21. Giunchiglia, F., Fumagalli, M.: On knowledge diversity. In: JOWO (2019)

    Google Scholar 

  22. Bornemann, E., Doveton, J.H., et al.: Log normalization by trend surface analysis. Log Anal. 22(04) (1981)

    Google Scholar 

  23. Kumar Jain, Y., Bhandare, S.K.: Min max normalization based data perturbation method for privacy protection. Int. J. Comput. Commun. Technol. 2(8), 45–50 (2011)

    Google Scholar 

  24. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24(5), 513–523 (1988)

    Article  Google Scholar 

  25. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M., et al.: Okapi at TREC-3. NIST Special Publication SP, 109:109 (1995)

    Google Scholar 

  26. Alani, H., Brewster, C.: Metrics for ranking ontologies (2006)

    Google Scholar 

  27. Kamiński, B., Jakubczyk, M., Szufel, P.: A framework for sensitivity analysis of decision trees. CEJOR 26(1), 135–159 (2017). https://doi.org/10.1007/s10100-017-0479-6

    Article  MathSciNet  MATH  Google Scholar 

  28. Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Tutorial (1991)

    Google Scholar 

  29. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: A theoretical framework for ontology evaluation and validation. In: SWAP, vol. 166, p. 16. Citeseer (2005)

    Google Scholar 

  30. Butt, A.S., Haller, A., Xie, L.: DWRank: learning concept ranking for ontology search. Semant. Web 7(4), 447–461 (2016)

    Article  Google Scholar 

  31. Martínez-Romero, M., Jonquet, C., O’connor, M.J., Graybeal, J., Pazos, A., Musen, M.A.: NCBO ontology recommender 2.0: an enhanced approach for biomedical ontology recommendation. J. Biomed. Semant. 8(1), 21 (2017)

    Google Scholar 

  32. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 8, 1226–1238 (2005)

    Article  Google Scholar 

Download references

Acknowledgement

The research conducted by Mattia Fumagalli is supported by the “NEXON - Foundations of Next-Generation Ontology-Driven Conceptual Modeling” project, funded by the Free University of Bozen-Bolzano. The research conducted by Fausto Giunchiglia and Daqian Shi has received funding from the “DELPhi - DiscovEring Life Patterns”, funded by the MIUR Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) 2017 – DD n. 1062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqian Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fumagalli, M., Shi, D., Giunchiglia, F. (2021). Ranking Schemas by Focus: A Cognitively-Inspired Approach. In: Braun, T., Gehrke, M., Hanika, T., Hernandez, N. (eds) Graph-Based Representation and Reasoning. ICCS 2021. Lecture Notes in Computer Science(), vol 12879. Springer, Cham. https://doi.org/10.1007/978-3-030-86982-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86982-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86981-6

  • Online ISBN: 978-3-030-86982-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics