Abstract
In this digital age, social media is an essential part of life. People share their moments and emotions through it. Consequently, detecting emotions in their behavior can be an effective way to determine their emotional disposition, which can then be used to control their negative thinking by making them see the positive aspects of the world. This study proposes an emotion detection-based mood control framework that reorganizes social media posts to match the user’s mental state. An emotion detection model based on Attention mechanism, Bidirectional Long Short Term Memory (LSTM), and Convolutional Neural Network (CNN) has been proposed which can detect six emotions from Bangla text with 66.98% accuracy. It also demonstrates how emotion detection frameworks can be implemented in other languages as well.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, A., Yousuf, M.A.: Sentiment analysis on Bangla text using long short-term memory (LSTM) recurrent neural network. In: Kaiser, M.S., Bandyopadhyay, A., Mahmud, M., Ray, K. (eds.) Proceedings of International Conference on Trends in Computational and Cognitive Engineering. AISC, vol. 1309, pp. 181–192. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4673-4_16
Al Banna, M.H., et al.: Attention-based bi-directional long-short term memory network for earthquake prediction. IEEE Access 9, 56589–56603 (2021)
Al Banna, M.H., Ghosh, T., Taher, K.A., Kaiser, M.S., Mahmud, M.: An earthquake prediction system for Bangladesh using deep long short-term memory architecture. Intelligent Systems: In: Proceedings of ICMIB 2020, p. 465 (2020)
Al Banna, M.H., Ghosh, T., Taher, K.A., Kaiser, M.S., Mahmud, M.: A monitoring system for patients of autism spectrum disorder using artificial intelligence. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 251–262. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_23
Al Banna, M.H., Haider, M.A., Al Nahian, M.J., Islam, M.M., Taher, K.A., Kaiser, M.S.: Camera model identification using deep CNN and transfer learning approach. In: 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), pp. 626–630. IEEE (2019)
Al Banna, M.H., Taher, K.A., Kaiser, M.S., Mahmud, M., Rahman, M.S., Hosen, A.S., Cho, G.H.: Application of artificial intelligence in predicting earthquakes: state-of-the-art and future challenges. IEEE Access 8, 192880–192923 (2020)
Nahian, M.J.A., Raju, M.H., Tasnim, Z., Mahmud, M., Ahad, M.A.R., Kaiser, M.S.: Contactless fall detection for the elderly. In: Ahad, M.A.R., Mahbub, U., Rahman, T. (eds.) Contactless Human Activity Analysis. ISRL, vol. 200, pp. 203–235. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68590-4_8
Al Nahian, M.J., et al.: Towards an accelerometer-based elderly fall detection system using cross-disciplinary time series features. IEEE Access 9, 39413–39431 (2021)
Al Nahian, M.J., et al.: Social group optimized machine-learning based elderly fall detection approach using interdisciplinary time-series features. In: 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), pp. 321–325. IEEE (2021)
Alam, T., Khan, A., Alam, F.: Bangla text classification using transformers (2020). arXiv preprint arXiv:2011.04446
Azmin, S., Dhar, K.: Emotion detection from Bangla text corpus using naïve bayes classifier. In: 2019 4th International Conference on Electrical Information and Communication Technology (EICT), pp. 1–5. IEEE (2019)
Bhowmik, N.R., Arifuzzaman, M., Mondal, M.R.H., Islam, M.: Bangla text sentiment analysis using supervised machine learning with extended lexicon dictionary. Nat. Lang. Proces. Res. 1(3–4), 34–45 (2021)
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information (2016). arXiv preprint arXiv:1607.04606
Das, A., Iqbal, M.D.A., Sharif, O., Hoque, M.M.: BEmoD: development of Bengali emotion dataset for classifying expressions of emotion in texts. In: Vasant, P., Zelinka, I., Weber, G.-W. (eds.) ICO 2020. AISC, vol. 1324, pp. 1124–1136. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68154-8_94
Das, A., Sharif, O., Hoque, M., Sarker, I.: Emotion classification in a resource constrained language using transformer-based approach (2021)
Das, D., Roy, S., Bandyopadhyay, S.: Emotion tracking on blogs - a case study for Bengali. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds.) IEA/AIE 2012. LNCS (LNAI), vol. 7345, pp. 447–456. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31087-4_47
Ghosh, T., Abedin, M.M.H.Z., Chowdhury, S.M., Tasnim, Z., Karim, T., Reza, S.S., Saika, S., Yousuf, M.A.: Bangla handwritten character recognition using mobilenet v1 architecture. Bull. Electr. Eng. Inf. 9(6), 2547–2554 (2020)
Ghosh, T., Al Banna, H., Mumenin, N., Yousuf, M.A., et al.: Performance analysis of state of the art convolutional neural network architectures in Bangla handwritten character recognition. Patt. Recogn. Image Anal. 31(1), 60–71 (2021)
Ghosh, T., Al Banna, M.H., Al Nahian, M.J., Taher, K.A., Kaiser, M.S., Mahmud, M.: A hybrid deep learning model to predict the impact of Covid-19 on mental health form social media big data (2021)
Ghosh, T., Chowdhury, S.M., Yousuf, M.A., et al.: A comprehensive review on recognition techniques for Bangla handwritten characters. In: 2019 International Conference on Bangla Speech and Language Processing (ICBSLP), pp. 1–6. IEEE (2019)
Hassan, A., Amin, M.R., Al Azad, A.K., Mohammed, N.: Sentiment analysis on Bangla and romanized Bangla text using deep recurrent models. In: 2016 International Workshop on Computational Intelligence (IWCI), pp. 51–56. IEEE (2016)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality (2013). arXiv preprint arXiv:1310.4546
Nabi, M.M., Altaf, M.T., Ismail, S.: Detecting sentiment from Bangla text using machine learning technique and feature analysis. Int. J. Comput. Appl. 153(11), 28–34 (2016)
Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014). http://www.aclweb.org/anthology/D14-1162
Rahman, M., Seddiqui, M., et al.: Comparison of classical machine learning approaches on Bangla textual emotion analysis (2019). arXiv preprint arXiv:1907.07826
Ruposh, H.A., Hoque, M.M.: A computational approach of recognizing emotion from Bengali texts. In: 2019 5th International Conference on Advances in Electrical Engineering (ICAEE), pp. 570–574. IEEE (2019)
Sarkar, K.: Using character n-gram features and multinomial naïve bayes for sentiment polarity detection in Bengali tweets. In: 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT), pp. 1–4. IEEE (2018)
Tripto, N.I., Ali, M.E.: Detecting multilabel sentiment and emotions from Bangla Youtube comments. In: 2018 International Conference on Bangla Speech and Language Processing (ICBSLP), pp. 1–6. IEEE (2018)
Acknowledgement
This research received funding from the ICT division of the Government of the People’s Republic of Bangladesh for 2020-21 financial year (tracking no: 20FS13595).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Ghosh, T. et al. (2021). An Attention-Based Mood Controlling Framework for Social Media Users. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds) Brain Informatics. BI 2021. Lecture Notes in Computer Science(), vol 12960. Springer, Cham. https://doi.org/10.1007/978-3-030-86993-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-86993-9_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86992-2
Online ISBN: 978-3-030-86993-9
eBook Packages: Computer ScienceComputer Science (R0)