Abstract
A handheld device (such as a smartphone/wearable) can be used for tracking and delivering navigation within a building using a wireless interface (such as WiFi or Bluetooth Low Energy), in situations when a traditional navigation system (such as a global positioning system) is unable to function effectively. In this paper, we present an indoor navigation system based on a combination of wall-mounted wireless sensors, a mobile health application (mHealth app), and WiFi/Bluetooth beacons. Such a system can be used to track and trace people with neurological disorders, such as Alzheimer’s disease (AD) patients, throughout the hospital complex. The Contact tracing is accomplished by using Bluetooth low-energy beacons to detect and monitor the possibilities of those who have been exposed to communicable diseases such as COVID-19. The communication flow between the mHealth app and the cloud-based framework is explained elaborately in the paper. The system provides a real-time remote monitoring system for primary medical care in cases where relatives of Alzheimer’s patients and doctors are having complications that may demand medical care or hospitalization. The proposed indoor navigation system has been found to be useful in assisting patients with Alzheimer’s disease (AD) while in the hospital building.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Mahmud, M., Al Mamun, S.: Detecting neurodegenerative disease from MRI: a brief review on a deep learning perspective. In: Liang, P., Goel, V., Shan, C. (eds.) BI 2019. LNCS, vol. 11976, pp. 115–125. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37078-7_12
Alam, M.E., Kaiser, M.S., Hossain, M.S., Andersson, K.: An IoT-belief rule base smart system to assess autism. In: 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT), pp. 672–676. IEEE (2018)
Al Banna, M.H., Ghosh, T., Taher, K.A., Kaiser, M.S., Mahmud, M.: A monitoring system for patients of autism spectrum disorder using artificial intelligence. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 251–262. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_23
Sumi, A.I., Zohora, M.F., Mahjabeen, M., Faria, T.J., Mahmud, M., Kaiser, M.S.: fASSERT: a fuzzy assistive system for children with autism using Internet of Things. In: Wang, S., et al. (eds.) BI 2018. LNCS (LNAI), vol. 11309, pp. 403–412. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05587-5_38
Ali, H.M., Kaiser, M.S., Mahmud, M.: Application of convolutional neural network in segmenting brain regions from MRI data. In: Liang, P., Goel, V., Shan, C. (eds.) BI 2019. LNCS, vol. 11976, pp. 136–146. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37078-7_14
Nahiduzzaman, M., Tasnim, M., Newaz, N.T., Kaiser, M.S., Mahmud, M.: Machine learning based early fall detection for elderly people with neurological disorder using multimodal data fusion. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 204–214. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_19
Altulayan, M.S., Huang, C., Yao, L., Wang, X., Kanhere, S.: Contextual bandit learning for activity-aware things-of-interest recommendation in an assisted living environment. In: Qiao, M., Vossen, G., Wang, S., Li, L. (eds.) ADC 2021. LNCS, vol. 12610, pp. 37–49. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69377-0_4
Sharma, S., Dudeja, R.K., Aujla, G.S., Bali, R.S., Kumar, N.: DeTrAs: deep learning-based healthcare framework for IoT-based assistance of Alzheimer patients. Neural Comput. Appl. 1–13 (2020). https://doi.org/10.1007/s00521-020-05327-2
Al Nahian, M.J., Ghosh, T., Uddin, M.N., Islam, M.M., Mahmud, M., Kaiser, M.S.: Towards artificial intelligence driven emotion aware fall monitoring framework suitable for elderly people with neurological disorder. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 275–286. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_25
Biswas, M., Whaiduzzaman, M.D.: Efficient mobile cloud computing through computation offloading. Int. J. Adv. Technol. 10(2) (2018)
Ahsanul Sarkar Akib, A.S.M., Ferdous, M.F., Biswas, M., Khondokar, H.M.: Artificial intelligence humanoid bongo robot in Bangladesh. In: 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), pp. 1–6. IEEE (2019)
Kaiser, M.S., et al.: iWorksafe: towards healthy workplaces during COVID-19 with an intelligent Phealth app for industrial settings. IEEE Access 9, 13814–13828 (2021)
Kaiser, M.S., et al.: Advances in crowd analysis for urban applications through urban event detection. IEEE Trans. Intell. Transp. Syst. 19(10), 3092–3112 (2018)
Asif-Ur-Rahman, M., et al.: Toward a heterogeneous mist, fog, and cloud-based framework for the internet of healthcare things. IEEE Internet Things J. 6(3), 4049–4062 (2018)
Kaiser, M.S., Chowdhury, Z.I., Mamun, S.A., Hussain, A., Mahmud, M.: A neuro-fuzzy control system based on feature extraction of surface electromyogram signal for solar-powered wheelchair. Cogn. Comput. 8(5), 946–954 (2016). https://doi.org/10.1007/s12559-016-9398-4
Biswas, S., Akhter, T., Kaiser, M.S., Mamun, S.A., et al.: Cloud based healthcare application architecture and electronic medical record mining: an integrated approach to improve healthcare system. In: 2014 17th International Conference on Computer and Information Technology (ICCIT), pp. 286–291. IEEE (2014)
Paul, M.C., Sarkar, S., Rahman, M.M., Reza, S.M., Kaiser, M.S.: Low cost and portable patient monitoring system for e-health services in Bangladesh. In: 2016 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–4. IEEE (2016)
El-Sheimy, N., Li, Y.: Indoor navigation: state of the art and future trends. Satell. Navig. 2(1), 1–23 (2021). https://doi.org/10.1186/s43020-021-00041-3
Zhuang, Y., Yang, J., Li, Y., Qi, L., El-Sheimy, N.: Smartphone-based indoor localization with bluetooth low energy beacons. Sensors 16(5), 596 (2016)
Sayapogu, T., Dsa, K., Kaul, P.: AR smart navigation system. In: 2021 2nd International Conference for Emerging Technology (INCET), pp. 1–4. IEEE (2021)
Halperin, D., Hu, W., Sheth, A., Wetherall, D.: Tool release: gathering 802.11 n traces with channel state information. ACM SIGCOMM Comput. Commun. Rev. 41(1), 53–53 (2011)
Mahmud, M., Kaiser, M.S., McGinnity, T.M., Hussain, A.: Deep learning in mining biological data. Cogn. Comput. 13(1), 1–33 (2021). https://doi.org/10.1007/s12559-020-09773-x
Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Al Mamun, S., Mahmud, M.: Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease. Parkinson’s disease and schizophrenia. Brain Inform. 7(1), 1–21 (2020). https://doi.org/10.1186/s40708-020-00112-2
Tsuchiya, L.D., Braga, L.F., de Faria Oliveira, O., de Bettio, R.W., Greghi, J.G., Freire, A.P.: Design and evaluation of a mobile smart home interactive system with elderly users in Brazil. Pers. Ubiquit. Comput. 25(2), 281–295 (2020). https://doi.org/10.1007/s00779-020-01408-0
Adardour, H.E., Hadjila, M., Irid, S.M.H., Baouch, T., Belkhiter, S.E.: Outdoor Alzheimer’s patients tracking using an IoT system and a Kalman filter estimator. Wirel. Pers. Commun. 116(1), 249–265 (2020). https://doi.org/10.1007/s11277-020-07713-4
McGoldrick, C., Crawford, S., Evans, J.J.: MindMate: a single case experimental design study of a reminder system for people with dementia. Neuropsychol. Rehabil. 31(1), 18–38 (2021)
Aljehani, S.S., Alhazmi, R.A., Aloufi, S.S., Aljehani, B.D., Abdulrahman, R.: iCare: applying IoT technology for monitoring Alzheimer’s patients. In: 2018 1st International Conference on Computer Applications Information Security (ICCAIS), pp. 1–6 (2018)
Zafari, F., Gkelias, A., Leung, K.K.: A survey of indoor localization systems and technologies. IEEE Commun. Surv. Tutor. 21(3), 2568–2599 (2019)
Ruiz, J., Mahmud, M., Modasshir, Md., Shamim Kaiser, M., For the Alzheimer’s Disease Neuroimaging Initiative: 3D DenseNet ensemble in 4-way classification of Alzheimer’s disease. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 85–96. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_8
Khedr, M., El-Sheimy, N.: S-PDR: SBAUPT-based pedestrian dead reckoning algorithm for free-moving handheld devices. Geomatics 1(2), 148–176 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Biswas, M. et al. (2021). Indoor Navigation Support System for Patients with Neurodegenerative Diseases. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds) Brain Informatics. BI 2021. Lecture Notes in Computer Science(), vol 12960. Springer, Cham. https://doi.org/10.1007/978-3-030-86993-9_37
Download citation
DOI: https://doi.org/10.1007/978-3-030-86993-9_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86992-2
Online ISBN: 978-3-030-86993-9
eBook Packages: Computer ScienceComputer Science (R0)