Abstract
Corneal ulcer segmentation from fluorescein staining images is vital for objective and quantitative assessments of ocular surface damages. How to utilize prior information from the fluorescein staining images is a challenge. In this work, we propose and validate a novel method for corneal ulcer segmentation. Leveraging Adjacent Scale Fusion and Corneal Position Embedding, our method can effectively capture fine patterns of the corneal ulcer as well as explicitly characterize the discriminating relative position information within the cornea. We evaluate the corneal ulcer segmentation performance of our method on a publicly-accessible SUSTech-SYSU dataset for automatically segmenting and classifying corneal ulcers, with a mean Dice similarity coefficient of 80.73% and a mean Jaccard Index of 71.63% having been obtained. Quantitative results identify the superiority of the proposed method over representative state-of-the-art deep learning frameworks. In addition, the importance of each key component in the proposed method is analyzed both quantitatively and qualitatively.
Z. Wang and J. Lyu contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Whitcher, J.P., Srinivasan, M., Upadhyay, M.P.: Corneal blindness: a global perspective. Bull. World Health Organ. 79, 214–221 (2001)
Bron, A.J., et al.: Methodologies to diagnose and monitor dry eye disease: report of the Diagnostic Methodology Subcommittee of the International Dry Eye WorkShop. Ocular Surface 5(2), 108–152 (2007)
Diamond, J., et al.: Corneal biopsy with tissue micro homogenisation for isolation of organisms in bacterial keratitis. Eye 13(4), 545 (1999)
Joyce, P.D.: Corneal vital staining. Ir. J. Med. Sci. (1926-1967) 42(8), 359–367 (1967). https://doi.org/10.1007/BF02954080
Passmore, J.W., King, J.H.: Vital staining of conjunctiva and cornea: review of literature and critical study of certain dyes. A.M.A. Arch. Ophthalmol. 53(4), 568–574 (1955)
Van Bijsterveld, O.P.: Diagnostic tests in the sicca syndrome. Arch. Ophthalmol. 82(1), 10–14 (1969)
Olsson, C., Thelin, S., Stahle, E.: Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. J. Vasc. Surg. 46(3), 609 (2007)
Bron, A.J., Evans, V.E., Smith, J.A.: Grading of corneal and conjunctival staining in the context of other dry eye tests. Cornea 22(7), 640–650 (2003)
Peterson, R.C., Wolffsohn, J.S.: Objective grading of the anterior eye. Optom. Vis. Sci. 86(3), 273–278 (2009)
Chun, Y.S., Yoon, W.B., Kim, K.G., Park, I.K.: Objective assessment of corneal staining using digital image analysis. Investig. Ophthalmol. Vis. Sci. 55(12), 7896–7903 (2014)
Deng, L., Huang, H., Yuan, J., Tang, X.: Superpixel based automatic segmentation of corneal ulcers from ocular staining images. In: IEEE 23rd International Conference on Digital Signal Processing, pp. 1–5 (2018)
Fu, H., et al.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Med. Imaging 37(7), 1597–1605 (2018)
Gu, Z., et al.: CE-Net: context encoder network for 2d medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)
Huang, Y., et al.: Automated hemorrhage detection from coarsely annotated fundus images in diabetic retinopathy. In: IEEE 17th International Symposium on Biomedical Imaging, pp. 1369–1372 (2020)
Deng, L., et al.: The SUSTech-SYSU dataset for automatically segmenting and classifying corneal ulcers. Sci. Data 7(1), 1–7 (2020)
Tao, A., Sapra, K., Catanzaro, B.: Hierarchical multi-scale attention for semantic segmentation. arXiv preprint arXiv:2005.10821 (2020)
Xu, R., Wang, X., Chen, K., Zhou, B., Loy, CC.: Positional encoding as spatial inductive bias in GANs. arXiv preprint arXiv:2012.05217 (2020)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS 2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Lin, T.Y., et al.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)
Chen, LC., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Z., Lyu, J., Luo, W., Tang, X. (2021). Adjacent Scale Fusion and Corneal Position Embedding for Corneal Ulcer Segmentation. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2021. Lecture Notes in Computer Science(), vol 12970. Springer, Cham. https://doi.org/10.1007/978-3-030-87000-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-87000-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86999-1
Online ISBN: 978-3-030-87000-3
eBook Packages: Computer ScienceComputer Science (R0)