Skip to main content

Are Cardiovascular Risk Scores from Genome and Retinal Image Complementary? A Deep Learning Investigation in a Diabetic Cohort

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2021)

Abstract

Risk of cardiovascular diseases (CVD) is driven by both genetic and environmental factors. Deep learning (DL) has shown that retinal images contain latent information indicating CVD risk. At the same time, genome-wide polygenic risk scores have demonstrated CVD risk prediction accuracy similar to conventional clinical factor-based risk scores. We speculated that information conveying CVD risk in retinal images may predominantly indicate environment factors rather than genetic factors, i.e., provide complementary information. Hence, we developed a DL model applied to diabetes retinal screening photographs from patients with type 2 diabetes based on EfficientNetB2 for predicting clinical atherosclerotic cardiovascular disease (ASCVD) risk score and a genome-wide polygenic risk score (PRS) for CVD. Results from 6656 photographs suggest a correlation between the actual and predicted ASCVD risk score (R2 = 0.534, 95% CI [0.504, 0.563]; MAE = 0.109 [0.105, 0.112]), but not so for actual and predicted PRS (R2 = −0.005 [−0.02, 0.01]; MAE = 0.484 [0.467, 0.5]. This suggests that retinal and genetic information are potentially complementary within an individual’s cardiovascular risk, hence their combination may provide an efficient and powerful approach to screening for CVD risk. To our best knowledge, this is the first time that DL is used to investigate the complementarity of retinal and genetic information for CVD risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)

    Google Scholar 

  2. Chang, J., Ko, A., Park, S.M., et al.: Association of cardiovascular mortality and deep learning-funduscopic atherosclerosis score derived from retinal fundus images. Am. J. Ophth. 217, 121–130 (2020)

    Article  Google Scholar 

  3. Cheung, C.Y.I., Zheng, Y., Hsu, W., et al.: Retinal vascular tortuosity, blood pressure, and cardiovascular risk factors. Ophthalmology 118(5), 812–818 (2011)

    Article  Google Scholar 

  4. Cheung, C.Y.I., Chan V.T., Mok V.C., et al.: Potential retinal biomarkers for dementia: what is new? Curr. Opin. Neurol. 32(1), 82–91 (2019)

    Article  Google Scholar 

  5. Chollet, F., et al.: Keras. https://keras.io (2015). Last accessed 2 March 2021

  6. Elliott, J., Bodinier, B., Bond, T.A., et al.: Predictive accuracy of a polygenic risk score-enhanced prediction model vs a clinical risk score for coronary artery disease. JAMA 323(7), 636–645 (2020). https://doi.org/10.1001/jama.2019.22241

    Article  Google Scholar 

  7. Fetit, A., Doney, A.S., Hogg, S., et al.: A multimodal approach to cardiovascular risk stratification in patients with type 2 diabetes incorporating retinal, genomic and clinical features. Sci. Rep. 9(1), 3591 (2019). https://doi.org/10.1038/s41598-019-40403-1

    Article  Google Scholar 

  8. Gerrits, N., Elen, B., Van Craenendonck, T., et al.: Age and sex affect deep learning prediction of cardiometabolic risk factors from retinal images. Sci. Rep. 10(1), 1–9 (2020)

    Article  Google Scholar 

  9. Goff, D., Lloyd-Jones, D.M., Bennett, G., et al.: 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129(25_suppl_2), S49–S73 (2014). https://doi.org/10.1161/01.cir.0000437741.48606.98

    Article  Google Scholar 

  10. Health Informatics Center (HIC) Services: Homepage, https://www.dundee.ac.uk/hic/hicservices/. Last accessed 21 July 2021

  11. Ho, H., Cheung, C.Y., Sabanayagam, C., Yip, W., et al.: Retinopathy signs improved prediction and reclassification of cardiovascular disease risk in diabetes: a prospective cohort study. Sci. Rep. 7(1), 1–8 (2017). https://doi.org/10.1038/srep41492

    Article  Google Scholar 

  12. Hébert, H.L., Shepherd, B., Milburn, K., et al.: Cohort profile: genetics of diabetes audit and research in tayside scotland (godarts). Int. J. Epidemiol. 47(2), 380–381j (2018). https://doi.org/10.1093/ije/dyx140

    Article  Google Scholar 

  13. Hemelings, R., Elen, B., Stalmans, I., et al.: Artery-vein segmentation in fundus images using a fully convolutional network. Comp. Med. Img. Graph. 76, 101636 (2019)

    Article  Google Scholar 

  14. Khera, A.V., Chaffin, M., Aragam, K.G., et al.: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50(9), 1219–1224 (2018). https://doi.org/10.1038/s41588-018-0183-z

    Article  Google Scholar 

  15. Kim, Y.D., Noh, K.J., Byun, S.J., et al.: Effects of hypertension, diabetes, and smoking on age and sex prediction from retinal fundus images. Sci. Rep. 10, 4623 (2020)

    Article  Google Scholar 

  16. Lau, Q.P., Lee, M.L., Hsu, W., Wong, T.Y.: Simultaneously identifying all true vessels from segmented retinal images. IEEE Trans. Biomed. Eng. 60(7), 1851–1858 (2013)

    Article  Google Scholar 

  17. Liew, G., Mitchell, P., Rochtchina, E., et al.: Fractal analysis of retinal microvasculature and coronary heart disease mortality. Eur. Heart J. 32(4), 422–429 (2011). https://doi.org/10.1093/eurheartj/ehq431

    Article  Google Scholar 

  18. McGeechan, K., Liew, G., Macaskill, P., et al.: Meta-analysis: retinal vessel caliber and risk for coronary heart disease. Ann. Intern. Med. 151(6), 404–413 (2009). https://doi.org/10.7326/0003-4819-151-6-200909150-00005

    Article  Google Scholar 

  19. Ma, W., Shuang, Y., Ma, K., Wang, J., Ding, X., Zheng, Y.: Multi-task Neural Networks with Spatial Activation for Retinal Vessel Segmentation and Artery/Vein Classification. In: Shen, D., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part I, pp. 769–778. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_85

    Chapter  Google Scholar 

  20. Mookiah, M.R.K., Hogg, S., MacGillivray, T.J., et al.: A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Med. Image Anal. 68, 101905 (2021). https://doi.org/10.1016/j.media.2020.101905

    Article  Google Scholar 

  21. Mookiah, M.R.K., Hogg, S., MacGillivray, T., Trucco, E., et al.: On the quantitative effects of compression of retinal fundus images on morphometric vascular measurements in vampire. Comp. Meth. Progr. Biomed., 105969 (2021)

    Google Scholar 

  22. Mora, S., Wenger, N.K., Cook, N.R., et al.: Evaluation of the pooled cohort risk equations for cardiovascular risk prediction in a multiethnic cohort from the women’s health initiative. JAMA Intern. Med. 178(9), 1231–1240 (2018)

    Article  Google Scholar 

  23. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Poplin, R., Varadarajan, A.V., Blumer, K., et al.: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2(3), 158–164 (2018)

    Article  Google Scholar 

  25. Rim, T.H., Lee, G., Kim, Y.,, et al.: Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms. Lancet Digital Health 2(10), e526–e536 (2020)

    Article  Google Scholar 

  26. Russakovsky, O., Deng, J., Su, H., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  27. Scottish Diabetic Retinopathy Screening Homepage: https://www.ndrs.scot.nhs.uk/. Last accessed 2 March 2021

  28. Selvaraju, R.R., Cogswell, M., Das, A., et al.: Grad-cam: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-019-01228-7

    Article  Google Scholar 

  29. Singh, A., Sengupta, S., Lakshminarayan, V.: Explainable deep learning models in medical image analysis, https://arxiv.org/pdf/2005.13799.pdf (2020)

  30. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: Proc. Int. Conf. on Machine Learning (ICML), pp. 6105–6114. PMLR (2017)

    Google Scholar 

  31. Trucco, E., MacGillivray, T.J., Xu, Y.W.: Computational Retinal Image Analysis. Academic Press, ISBN 9780081028162 (2019)

    Google Scholar 

  32. Welikala, R.A., Foster, P.J., Whincup, P.H., et al.: Automated arteriole and venule classification using deep learning for retinal images from the UK Biobank cohort. Comput. Biol. Med. 90, 23–32 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Institute for Health Research (NIHR) (INSPIRED 16/136/102) using UK aid from the UK Government to support global health research. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care. We would like to thank VAMPIRE and INSPIRED project teams, Computing (SSEN), University of Dundee, especially Muthu Mookiah and Stephen Hogg for relevant, useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ghouse Syed .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 871 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Syed, M.G., Doney, A., George, G., Mordi, I., Trucco, E. (2021). Are Cardiovascular Risk Scores from Genome and Retinal Image Complementary? A Deep Learning Investigation in a Diabetic Cohort. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2021. Lecture Notes in Computer Science(), vol 12970. Springer, Cham. https://doi.org/10.1007/978-3-030-87000-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87000-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86999-1

  • Online ISBN: 978-3-030-87000-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics