Skip to main content

Dual-Branch Attention Network and Atrous Spatial Pyramid Pooling for Diabetic Retinopathy Classification Using Ultra-Widefield Images

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12970))

Included in the following conference series:

  • 1462 Accesses

Abstract

Diabetic Retinopathy (DR) is a very common retinal disease in the world, which can affect vision and even cause blindness. Early diagnosis can effectively prevent the disease, or at least delay the progression of DR. However, most methods are based on regular single-view images, which would lack complete information of lesions. In this paper, a novel method is proposed to achieve DR classification using ultra-widefield images (UWF). The proposed network includes a dual-branch network, an efficient channel attention (ECA) module, a spatial attention (SA) module, and an atrous spatial pyramid pooling (ASPP) module. Specifically, the dual-branch network uses ResNet-34 model as the backbone. The ASPP module enlarges the receptive field to extract rich feature information by setting different dilated rates. To emphasize the useful information and suppress the useless information, the ECA and SA modules are utilized to extract important channel information and spatial information respectively. To reduce the parameters of the network, we use a global average pooling (GAP) layer to compress the features. The experimental results on the UWF images collected by a local hospital show that our model performs very well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yau, J.W., et al.: Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3), 556–564 (2012)

    Article  Google Scholar 

  2. Webb, R.H., Hughes, G.W.: Scanning laser ophthalmoscope. IEEE Trans. Biomed. Eng. 7, 488–492 (1981)

    Article  Google Scholar 

  3. Haleem, M.S., Han, L., van Hemert, J., Li, B., Fleming, A.: Retinal area detector from scanning laser ophthalmoscope (SLO) images for diagnosing retinal diseases. IEEE J. Biomed. Health Inform. 19(4), 1472–1482 (2014)

    Article  Google Scholar 

  4. Ashok, V., Murugesan, G.: Detection of retinal area from scanning laser ophthalmoscope images (SLO) using deep neural network. Int. J. Biomed. Eng. Technol. 23(2–4), 303–314 (2017)

    Article  Google Scholar 

  5. Nagasato, D., et al.: Deep neural network-based method for detecting central retinal vein occlusion using ultrawide-field fundus ophthalmoscopy. Ophthalmology 2018 (2018)

    Google Scholar 

  6. Pellegrini, E., et al.: A graph cut approach to artery/vein classification in ultra-widefield scanning laser ophthalmoscopy. IEEE Trans. Med. Imag. 37(2), 516–526 (2017)

    Article  Google Scholar 

  7. Brown, J.M., et al.: Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol. 136(7), 803–810 (2018)

    Article  Google Scholar 

  8. Li, F., et al.: Deep learning-based automated detection for diabetic retinopathy and diabetic macular oedema in retinal fundus photographs. Eye, 1–9 (2021)

    Google Scholar 

  9. Diaz-Pinto, A., et al.: Retinal image synthesis and semi-supervised learning for glaucoma assessment. IEEE Trans. Med. Imag. 38(9), 2211–2218 (2019)

    Article  Google Scholar 

  10. Xie, H., et al.: Cross-attention multi-branch network for fundus diseases classification using SLO images. Med. Image Anal. 71, 102031 (2021)

    Article  Google Scholar 

  11. Hamwood, J., et al.: Automatic detection of cone photoreceptors with fully convolutional networks. Transl. Vis. Sci. Technol. 8(6), 10 (2019)

    Article  Google Scholar 

  12. Ruan, Y., et al.: MB-FSGAN: joint segmentation and quantification of kidney tumor on CT by the multi-branch feature sharing generative adversarial network. Med. Image Anal. 64, 101721 (2020)

    Article  Google Scholar 

  13. Mou, L., et al.: CS-Net: Channel and Spatial Attention Network for Curvilinear Structure Segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 721–730. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_80

    Chapter  Google Scholar 

  14. Nie, D., Wang, L., Xiang, L., Zhou, S., Adeli, E., Shen, D.: Difficulty-aware attention network with confidence learning for medical image segmentation. In: AAAI, pp. 1085–1092 (2019)

    Google Scholar 

  15. Shaikh, M., Kollerathu, V.A., Krishnamurthi, G.: Recurrent attention mechanism networks for enhanced classification of biomedical images. In: IEEE ISBI, pp. 1260–1264 (2019)

    Google Scholar 

  16. Zhang, J., Xie, Y., Xia, Y., Shen, C.: Attention residual learning for skin lesion classification. IEEE Trans. Med. Imag. 38(9), 2092–2103 (2019)

    Article  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  18. Gu, Z., et al.: DeepDisc: optic disc segmentation based on atrous convolution and spatial pyramid pooling. In: Stoyanov, D., et al. (eds.) OMIA/COMPAY 2018, LNCS, vol. 11039, pp. 253–260. Springer, Cham (2018)

    Google Scholar 

  19. Schlemper, J., et al.: Attention gated networks: learning to leverage salient regions in medical images. Med. Image Anal. 53, 197–207 (2019)

    Article  Google Scholar 

  20. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: Bach, F.R., Blei, D.M. (eds.) International Conference on Machine Learning 2015, PMLR, vol. 37, pp. 2048–2057. PMLR, Lille (2015)

    Google Scholar 

  21. Wang, Q., et al.: ECA-Net: efficient channel attention for deep convolutional neural networks. In: CVPR (2020)

    Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  23. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016)

    Google Scholar 

  24. Huang, G., et al.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported partly by National Natural Science Foundation of China (Nos. 61871274, 61801305 and 81571758), National Natural Science Foundation of Guangdong Province (No. 2020A1515010649 and No. 2019A1515111205), Guangdong Province Key Laboratory of Popular High Performance Computers (No. 2017B030314073), Guangdong Laboratory of Artificial-Intelligence and Cyber-Economics (SZ), the China Postdoctoral Science Foundation (2021M692196), Shenzhen Peacock Plan (Nos. KQTD2016053112051497 and KQTD2015033016104926), Shenzhen Key Basic Research Project (Nos. JCYJ20190808165209410, 20190808145011259, JCYJ20180507184647636, GJHZ20190822095414576 and JCYJ20170302153337765, JCYJ20170302150411789, JCYJ20170302142515949, GCZX2017040715180580, GJHZ20180418190529516, and JSGG20180507183215520), NTUT-SZU Joint Research Program (No. 2020003), Special Project in Key Areas of Ordinary Universities of Guangdong Province (No. 2019KZDZX1015), Shenzhen Key Medical Discipline Construction Fund (No. SZXK038), Shenzhen Fund for Guangdong Provincial High-level Clinical Key Speciaties (No. SZGSP014), Shenzhen-Hong Kong Co-financing Project (No. SGDX20190920110403741).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiying Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, Z. et al. (2021). Dual-Branch Attention Network and Atrous Spatial Pyramid Pooling for Diabetic Retinopathy Classification Using Ultra-Widefield Images. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2021. Lecture Notes in Computer Science(), vol 12970. Springer, Cham. https://doi.org/10.1007/978-3-030-87000-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87000-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86999-1

  • Online ISBN: 978-3-030-87000-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics