Skip to main content

Impact of Data Augmentation on Retinal OCT Image Segmentation for Diabetic Macular Edema Analysis

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12970))

Included in the following conference series:

Abstract

Deep learning models have become increasingly popular for analysis of optical coherence tomography (OCT), an ophthalmological imaging modality considered standard practice in the management of diabetic macular edema (DME). Despite the need for large image training datasets, only limited number of annotated OCT images are publicly available. Data augmentation is an essential element of the training process which provides an effective approach to expand and diversify existing datasets. Such methods are even more valuable for segmentation tasks since manually annotated medical images are time-consuming and costly. Surprisingly, current research interests are primarily focused on architectural innovation, often leaving aside details of the training methodology. Here, we investigated the impact of data augmentation on OCT image segmentation and assessed its value in detection of two prevalent features of DME: intraretinal fluid cysts and lipids. We explored the relative effectiveness of various types of transformations carefully designed to preserve the realism of the OCT image. We also evaluated the effect of data augmentation on the performance of similar architectures differing by depth. Our results highlight the effectiveness of data augmentation and underscore the merit of elastic deformation, for OCT image segmentation, reducing the dice score error by up to 23.66%. These results also show that data augmentation strategies are competitive to architecture modifications without any added complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 21 September 2021

    The original version of this chapter was revised. The last name of an author was incorrect. The author’s last name has been corrected to “Soudry”.

References

  1. Cheloni, R., Gandolfi, S.A., Signorelli, C., Odone, A.: Global prevalence of diabetic retinopathy: protocol for a systematic review and meta-analysis. BMJ Open 9(3), e022188 (2019). https://doi.org/10.1136/bmjopen-2018-022188

    Article  Google Scholar 

  2. Huang, D., et al.: Optical coherence tomography. Science 254(5035), 1178–1181 (1991). https://doi.org/10.1126/science.1957169

    Article  Google Scholar 

  3. Patel, P.J., Browning, A.C., Chen, F.K., da Cruz, L., Tufail, A.: Interobserver agreement for the detection of optical coherence tomography features of neovascular age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 50(11), 5405–5410 (2009). https://doi.org/10.1167/iovs.09-3505

    Article  Google Scholar 

  4. Lynch, C.J., Liston, C.: New machine-learning technologies for computer-aided diagnosis. Nat. Med. 24(9), 1304–1305 (2018). https://doi.org/10.1038/s41591-018-0178-4

    Article  Google Scholar 

  5. Stolte, S., Fang, R.: A survey on medical image analysis in diabetic retinopathy. Med. Image Anal. 64, 101742 (2020). https://doi.org/10.1016/j.media.2020.101742

    Article  Google Scholar 

  6. Yanagihara, R.T., Lee, C.S., Ting, D.S.W., Lee, A.Y.: Methodological challenges of deep learning in optical coherence tomography for retinal diseases: a review. Transl. Vis. Sci. Technol. 9(2), 11 (2020). https://doi.org/10.1167/tvst.9.2.11

    Article  Google Scholar 

  7. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. In: ICML 2019, pp. 10691–10700 (2019)

    Google Scholar 

  8. Bello, I., et al.: Revisiting ResNets: improved training and scaling strategies (2021). http://arxiv.org/abs/2103.07579. Accessed 02 June 2021

  9. Zoph, B., Cubuk, E.D., Ghiasi, G., Lin, T.-Y., Shlens, J., Le, Q.V.: Learning data augmentation strategies for object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 566–583. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_34

    Chapter  Google Scholar 

  10. Dvornik, N., Mairal, J., Schmid, C.: On the importance of visual context for data augmentation in scene understanding. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 2014–2028 (2021). https://doi.org/10.1109/TPAMI.2019.2961896

    Article  Google Scholar 

  11. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR 2003, pp. 958–963 (2003). https://doi.org/10.1109/ICDAR.2003.1227801

  12. Wang, M., Li, P.: A review of deformation models in medical image registration. J. Med. Biol. Eng. 39(1), 1–17 (2018). https://doi.org/10.1007/s40846-018-0390-1

    Article  MathSciNet  Google Scholar 

  13. Devalla, S.K., et al.: DRUNET: a dilated-residual u-net deep learning network to digitally stain optic nerve head tissues in optical coherence tomography images. Biomed. Opt. Express 9(7), 3244–3265 (2018). https://doi.org/10.1364/boe.9.003244

    Article  Google Scholar 

  14. Bar-David, D., et al.: Elastic deformation of optical coherence tomography images of diabetic macular edema for deep-learning models training: how far to go? (2021). https://arxiv.org/abs/2107.03651v1

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Venhuizen, F.G., et al.: Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks. Biomed. Opt. Express 8(7), 3292 (2017). https://doi.org/10.1364/BOE.8.003292

    Article  Google Scholar 

  17. Tennakoon, R., Gostar, A.K., Hoseinnezhad, R., Bab-Hadiashar, A.: Retinal fluid segmentation in OCT images using adversarial loss based convolutional neural networks. In: Proceedings – International Symposium on Biomedical Imaging, pp. 1436–1440. May 2018. https://doi.org/10.1109/ISBI.2018.8363842

  18. Asgari, R., Waldstein, S., Schlanitz, F., Baratsits, M., Schmidt-Erfurth, U., Bogunović, H.: U-Net with spatial pyramid pooling for Drusen segmentation in optical coherence tomography. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds.) OMIA 2019. LNCS, vol. 11855, pp. 77–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32956-3_10

    Chapter  Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst., 1–9 (2012). https://doi.org/10.1016/j.protcy.2014.09.007

  20. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9. June 2015. https://doi.org/10.1109/CVPR.2015.7298594

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  22. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017)

    Google Scholar 

  23. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: CVPR Workshops, pp. 702–703 (2020)

    Google Scholar 

  24. He, Y., et al.: Fully convolutional boundary regression for retina OCT segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 120–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_14

    Chapter  Google Scholar 

  25. Apostolopoulos, S., De Zanet, S., Ciller, C., Wolf, S., Sznitman, R.: Pathological OCT retinal layer segmentation using branch residual U-shape networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 294–301. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_34

    Chapter  Google Scholar 

  26. Lu, D., et al.: Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Med. Image Anal. 54, 100–110 (2019). https://doi.org/10.1016/j.media.2019.02.011

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Israeli Ministry of Health, Kopel Grant number 2028211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bar-David .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 10 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bar-David, D., Bar-David, L., Soudry, S., Fischer, A. (2021). Impact of Data Augmentation on Retinal OCT Image Segmentation for Diabetic Macular Edema Analysis. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2021. Lecture Notes in Computer Science(), vol 12970. Springer, Cham. https://doi.org/10.1007/978-3-030-87000-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87000-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86999-1

  • Online ISBN: 978-3-030-87000-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics