Abstract
Deep learning models have become increasingly popular for analysis of optical coherence tomography (OCT), an ophthalmological imaging modality considered standard practice in the management of diabetic macular edema (DME). Despite the need for large image training datasets, only limited number of annotated OCT images are publicly available. Data augmentation is an essential element of the training process which provides an effective approach to expand and diversify existing datasets. Such methods are even more valuable for segmentation tasks since manually annotated medical images are time-consuming and costly. Surprisingly, current research interests are primarily focused on architectural innovation, often leaving aside details of the training methodology. Here, we investigated the impact of data augmentation on OCT image segmentation and assessed its value in detection of two prevalent features of DME: intraretinal fluid cysts and lipids. We explored the relative effectiveness of various types of transformations carefully designed to preserve the realism of the OCT image. We also evaluated the effect of data augmentation on the performance of similar architectures differing by depth. Our results highlight the effectiveness of data augmentation and underscore the merit of elastic deformation, for OCT image segmentation, reducing the dice score error by up to 23.66%. These results also show that data augmentation strategies are competitive to architecture modifications without any added complexity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Change history
21 September 2021
The original version of this chapter was revised. The last name of an author was incorrect. The author’s last name has been corrected to “Soudry”.
References
Cheloni, R., Gandolfi, S.A., Signorelli, C., Odone, A.: Global prevalence of diabetic retinopathy: protocol for a systematic review and meta-analysis. BMJ Open 9(3), e022188 (2019). https://doi.org/10.1136/bmjopen-2018-022188
Huang, D., et al.: Optical coherence tomography. Science 254(5035), 1178–1181 (1991). https://doi.org/10.1126/science.1957169
Patel, P.J., Browning, A.C., Chen, F.K., da Cruz, L., Tufail, A.: Interobserver agreement for the detection of optical coherence tomography features of neovascular age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 50(11), 5405–5410 (2009). https://doi.org/10.1167/iovs.09-3505
Lynch, C.J., Liston, C.: New machine-learning technologies for computer-aided diagnosis. Nat. Med. 24(9), 1304–1305 (2018). https://doi.org/10.1038/s41591-018-0178-4
Stolte, S., Fang, R.: A survey on medical image analysis in diabetic retinopathy. Med. Image Anal. 64, 101742 (2020). https://doi.org/10.1016/j.media.2020.101742
Yanagihara, R.T., Lee, C.S., Ting, D.S.W., Lee, A.Y.: Methodological challenges of deep learning in optical coherence tomography for retinal diseases: a review. Transl. Vis. Sci. Technol. 9(2), 11 (2020). https://doi.org/10.1167/tvst.9.2.11
Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. In: ICML 2019, pp. 10691–10700 (2019)
Bello, I., et al.: Revisiting ResNets: improved training and scaling strategies (2021). http://arxiv.org/abs/2103.07579. Accessed 02 June 2021
Zoph, B., Cubuk, E.D., Ghiasi, G., Lin, T.-Y., Shlens, J., Le, Q.V.: Learning data augmentation strategies for object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 566–583. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_34
Dvornik, N., Mairal, J., Schmid, C.: On the importance of visual context for data augmentation in scene understanding. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 2014–2028 (2021). https://doi.org/10.1109/TPAMI.2019.2961896
Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR 2003, pp. 958–963 (2003). https://doi.org/10.1109/ICDAR.2003.1227801
Wang, M., Li, P.: A review of deformation models in medical image registration. J. Med. Biol. Eng. 39(1), 1–17 (2018). https://doi.org/10.1007/s40846-018-0390-1
Devalla, S.K., et al.: DRUNET: a dilated-residual u-net deep learning network to digitally stain optic nerve head tissues in optical coherence tomography images. Biomed. Opt. Express 9(7), 3244–3265 (2018). https://doi.org/10.1364/boe.9.003244
Bar-David, D., et al.: Elastic deformation of optical coherence tomography images of diabetic macular edema for deep-learning models training: how far to go? (2021). https://arxiv.org/abs/2107.03651v1
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Venhuizen, F.G., et al.: Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks. Biomed. Opt. Express 8(7), 3292 (2017). https://doi.org/10.1364/BOE.8.003292
Tennakoon, R., Gostar, A.K., Hoseinnezhad, R., Bab-Hadiashar, A.: Retinal fluid segmentation in OCT images using adversarial loss based convolutional neural networks. In: Proceedings – International Symposium on Biomedical Imaging, pp. 1436–1440. May 2018. https://doi.org/10.1109/ISBI.2018.8363842
Asgari, R., Waldstein, S., Schlanitz, F., Baratsits, M., Schmidt-Erfurth, U., Bogunović, H.: U-Net with spatial pyramid pooling for Drusen segmentation in optical coherence tomography. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds.) OMIA 2019. LNCS, vol. 11855, pp. 77–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32956-3_10
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst., 1–9 (2012). https://doi.org/10.1016/j.protcy.2014.09.007
Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9. June 2015. https://doi.org/10.1109/CVPR.2015.7298594
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017)
Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: CVPR Workshops, pp. 702–703 (2020)
He, Y., et al.: Fully convolutional boundary regression for retina OCT segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 120–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_14
Apostolopoulos, S., De Zanet, S., Ciller, C., Wolf, S., Sznitman, R.: Pathological OCT retinal layer segmentation using branch residual U-shape networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 294–301. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_34
Lu, D., et al.: Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Med. Image Anal. 54, 100–110 (2019). https://doi.org/10.1016/j.media.2019.02.011
Acknowledgments
This work was supported by the Israeli Ministry of Health, Kopel Grant number 2028211.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Bar-David, D., Bar-David, L., Soudry, S., Fischer, A. (2021). Impact of Data Augmentation on Retinal OCT Image Segmentation for Diabetic Macular Edema Analysis. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2021. Lecture Notes in Computer Science(), vol 12970. Springer, Cham. https://doi.org/10.1007/978-3-030-87000-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-87000-3_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86999-1
Online ISBN: 978-3-030-87000-3
eBook Packages: Computer ScienceComputer Science (R0)